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Ad hoc data is everywhere. There is a plethora of data formats in use, which, due to the

specificity of their domain, lack the processing tools that we might otherwise take for

granted. We call such data formats, and the data that they represent, ad hoc. Ad hoc

data is usually stored in file systems and can be organized into larger structures that we

call filestores, collections of files and folders along with the properties between them.

This dissertation aims to support the usage of ad hoc filestores. We design domain-

specific languages for processing filestores with increasingly complex requirements,

building on previous work on PADS and Forest. These existing systems accept declarative

specifications of ad hoc data formats, as single files and filestores respectively. From

these specifications, they generate tools for loading, storing, and validating the data.

Unfortunately, Forest does not adequately deal with large filestores, or cost control

in general. Nor does it offer support for correctly managing concurrent operations, which

are common in file systems. This dissertation offers solutions to these problems.

We first introduce Incremental Forest, a domain-specific language and system that

enables incremental processing of filestores. This language offers a new mechanism, a

delay construct, for explicitly controlling the costs of loading and storing in filestores.

Incremental Forest comes with a customizable cost model, which guarantees that a wide

class of costs monotonically decrease as delays increase.

Our next system, Transactional Forest, does away with the delays from Incremental

Forest, opting to use an entirely new interface language and abstraction, which offer



automatic incrementality. Additionally, Transactional Forest leverages this abstraction,

a zipper, to provide simple, provably correct serializable transactions using optimistic

concurrency control.

Finally, the Zipper File System goes beyond designing a domain-specific language,

targeting the file system itself to provide deeper control with respect to other users.

The Zipper File System uses the ideas from Transactional Forest to provide serializable

transactions in a zipper-based file system. It also comes with a translation from POSIX

that theoretically allows standard applications to be run on our file system, without

changes.

Taken together, these systems use domain-specific languages to enable users to

efficiently and correctly manage ad hoc filestores in concurrent settings.
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Chapter 1

Introduction

“In the beginning, there was chaos.”

—Hesiod, Theogony

The world is exploding with data. The amount of data being generated each day is

exponentially increasing, but data is useless without applications that can effectively use

it. Unfortunately, the format of much of this data is ad hoc. Ad hoc formats are usually

invented on an as-needed basis, and, most importantly, lack the plethora of processing

tools that widespread, standardized formats enjoy. We use the phrase ad hoc data to

describe data in ad hoc formats. Such data shows up in diverse fields including hydrology,

genetics, telecommunications, finance, and health care.

This dissertation is about designing systems and languages for ad hoc data processing.

The goal is to minimize the time users need to spend on the minutiae of correctly digesting

data into applications and, perhaps, eventually spitting it back out. We want to free

up users’ time to focus on the salient details of the data and consider the logic behind

processing it. So, we design a family of languages that enable users to describe what

their data looks like and, in return, get specialized tools, like parsers and deparsers, for

manipulating and analyzing that data.

We define ad hoc data not by what it is, but by what it is not: Three data formats that
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((raccoon:19.19959,bear:6.80041):0.84600,((sea_lion:11.99700, \
seal:12.00300):7.52973,((monkey:100.85930,cat:47.14069):20.59201, \
weasel:18.87953):2.09460):3.87382,dog:25.46154);

(a) Newick Standard Data used to represent a philogenetic tree

208.196.124.26 - Dbuser [15/Oct/2006:18:46:55 -0700] \
"GET /candatop.html HTTP/1.0" 200 -
www.att.com - - [15/Oct/2006:18:47:01 -0700] \
"GET /images/reddash2.gif HTTP/1.0" 200 237
208.196.124.26 - - [15/Oct/2006:18:47:02 -0700] \
"POST /images/refrun1.gif HTTP/1.0" 200 836

(b) Common Log Format (CLF) web server logs

file.cio

*.tmp *.pcp

basins.bsn plant.dat

fig.fig

till.dat pest.dat

fert.dat urban.dat

*.rte *.swq *.sub *.wgn *.pnd *.wus

*.hru *.mgt *.sol *.chm *.gw *.sep

(c) Soil and Water Assessment Tool (SWAT) filestore dependency tree

Figure 1.1: Examples of three ad hoc data formats: (a) and (b) are single file formats,
while (c) captures the dependency tree of a full filestore, with each individual node being
comprised of a different ad hoc format.
Note: Backslashes mark newlines that were inserted to improve readability to distinguish
them from newlines in the format.
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are not ad hoc are XML, JSON, and relational databases. They are structured, standard-

ized formats with built-in tools or easily accessible libraries for processing and querying

in every major general-purpose programming language. In comparison, consider the

formats in Figure 1.1. The Newick format used in genetics is a flat representation of

a tree with weighted edges. The Common Log Format (CLF) is commonly used to log

web server activity. Both are single source formats, comprised of single files or perhaps

a single source of streaming data. The Soil and Water Assessment Tool (SWAT) [39]

Input/Output format is instead an example of a filestore, which encompasses a whole

collection of files and folders, along with relations between them. In this instance,

individual files are additionally in ad hoc data formats (not pictured), but this does not

need to be the case. SWAT is used by watershed hydrologists to quantify the impact of

hypothetical changes on a watershed.

Note that being ad hoc is an extrinsic property of data. If an ad hoc data format

becomes sufficiently standard that processing tools and libraries become widespread, the

data format becomes less ad hoc over time. However, it is rare for data formats to grow

to become as widely used as XML and JSON, and thus, it still behooves us to deal with

the difficulties that come with processing ad hoc data:

1. The user usually has little or no control over the data format: The data arrives as is

and needs to be processed.

2. The documentation is rarely adequate. Frequently, there is no documentation. If

it does exist, it tends to be incomplete: The representation of ‘missing data’ is

often undocumented. Additionally, the documentation is often out-of-date due to

changing requirements or resource availability. For example, sometimes data that

was originally included in a format is never used and it becomes clear that other

data would be useful. Instead of changing the format, the old storage locations get

repurposed to accommodate the new data.

3



3. Data may be wrong or malformed. Due to the data being missing, human error,

some malfunction, or other issues, some data is different than the expected format

suggests. Breaking, discarding the data, or silently failing is rarely a good enough

response for processing. The right approach to error handling is application-specific.

Errors can even be the most important part of the data: If errors signal that some

step in the core business malfunctioned, knowing exactly where this happened is

crucial.

4. Formats can feature dependencies between fields. For example, it is common to

have one or more flag fields indicating the format of the data to come.

While these issues are fairly common in all ad hoc data formats, filestores—collections

of files and folders and the relationships between them—more frequently suffer from

several more:

5. Filestores are often too large to fit into memory. This means that applications

cannot load and process all of the data at the same time.

6. File systems are slow. Compounded with the previous point, this leads to different

design requirements for applications.

7. File systems tend to support concurrent users. This brings issues that developers

must consider to ensure the correctness of their programs.

The standard POSIX file system interface is low-level and requires a large amount

of manual effort to deal with the above issues. Further, getting the details right and

reasoning about the correctness of programs is famously difficult in low-level languages.

The reasoning problem is exacerbated because that the POSIX interface has no formal

semantics and, even informally, is underspecified.

Nonetheless, filestores are common. They are often used as a database. There are

several reasons why one might use a filestore instead of a database: File systems are

4



ubiquitous, and the data stored on them is portable. This ubiquity additionally offers

a lower barrier to entry. Most users have a file system that they can immediately start

using to host their filestore. To use a database, would require: (1) finding appropriate

database software, which might have additional costs; (2) transforming raw data into a

database compliant format; and (3) learning the interface of that database in the pro-

gramming language of choice. Additionally, databases tend to be optimized for particular

usage patterns and, a priori, users might not know enough about the characteristics of

their application to choose a database. If the data is not relational, then finding the

right database becomes even harder because non-relational databases tend to be more

specialized than relational databases.

Most importantly, as per issue 1 above, many consumers of data are not the produc-

ers, so they have no control over what their data looks like.

Whatever a user’s reason for using a filestore, these repositories are in common use.

These filestores may further contain single-file ad hoc data formats as described above.

We view filestores as a general model that can encompass multiple files in multiple,

possibly ad hoc, data formats along with higher-level properties of/between files and

folders.

The point of this work is to mitigate the issues stated above. We design systems

and languages that minimize the application design and programming overhead of ad

hoc data processing. In the next section, we concretize the difficulties of working with

filestores by considering the requirements of application writers.

1.1 Requirements

Consider a watershed hydrologist who wants to run experiments on a SWAT filestore.

SWAT, or the Soil and Water Assessment Tool, is a modeling framework used to quantify

the impact of hypothetical changes on a watershed. A team of hydrologists might use this
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tool to simulate the effects on a river from cutting down a swath of forest and planting

crops. What specific steps do the hydrologists need to take to run experiments on this

data using their favorite programming language?1

First, they need to transfer the data from a filestore into a program. This could be

done using string processing techniques and regular expressions, but likely, particularly

for such a large format, a hydrologist would be better off writing a lexer and a parser.

The hydrologist also needs to write data to the filestore, for use with existing modeling

tools. In the case of SWAT, there are many ad hoc data formats for the individual files

as well as filestore level dependencies, so many lexers and parsers with additional glue

code could be needed.

In order to write a parser, the hydrologists need to know the grammar of the

formats in their filestore. In the case of SWAT, there is remarkably complete documenta-

tion [38]—650 pages of dense, declarative descriptions of each file format. Translating

this documentation into a formal grammar would be non-trivial. Additionally, they need

to build robust parsers, which can handle malformed data in application-specific ways.

In the case of SWAT, we believe that they would want to be informed of the location of

such data in order to manually replace it with something sensible.

Since SWAT filestores can be sizable and many applications do not require reading

or writing all of the data, the hydrologists would want to build their parser and deparser

to support incremental reading and writing.

Once the hydrologists have built parsers and deparsers with all of these properties,

they can finally write their application. Often, these applications take a long time to

run, but admit parallelization. For example, calibration often requires many runs that

tweak parameters to try to match a model to the ground truth data. The hydrologists

parallelize their application for efficiency, but need to ensure that it runs correctly.

1There exist a few tools for processing SWAT filestores, but to my knowledge, none have interfaces
to general programming languages. The tools are limited in their support for automated and flexible
experiments. In the last few years, SWAT+ has been released, which may include a more flexible interface.
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Correct concurrency is a difficult problem, made even harder because it is difficult to tell

when something went wrong.

Finally, the hydrologists can run their analyses, record the results, and write and

publish a paper. This is the exciting part, but notice how many steps are necessary to get

here. Importantly, many steps do not require the hydrologists’ domain knowledge.

The goal of this research was to mitigate the difficulty of, and time spent on, steps

that do not require domain expertise when analyzing data. This work designs systems

and languages for automating as many of these steps as possible, with the minimal

amount of input from a domain expert. Hopefully, this will free them from worrying

about rote details of the problem and enable interesting data processing.

1.2 A Solution

We design a family of languages and systems that aid users in ad hoc data processing.

The languages allow users to specify the format of single files and full filestores. From

these specifications, we generate tools for manipulating data, including incremental

parsers and deparsers, and provide automatic serializability between threads running

applications against the system’s interface. We have formal semantics—for the languages

and for a transactional file system that we designed—which lets more advanced users

reason about programs.

This line of work started with PADS, a declarative domain-specific language (DSL)

for Processing Ad hoc Data Sources [8]. Users of PADS write a declarative specification

of a single ad hoc format. In return, the system generates data types corresponding to

that format and generates parsers and deparsers with hooks for application-specific error

handling. Additionally, it generates a suite of tools for conversion to XML and some

simple statistical analyses.

While PADS deals specifically with single data sources, many ad hoc formats are

7



collections of directories and files, often themselves in ad hoc formats. Forest [7] is

also a DSL, which is similar to PADS, but for specifying and processing whole filestores.

Additionally, the developers of Forest observed that these parsers and deparsers are

like bidirectional lenses [12], mapping between an in-memory representation and a

file system representation of the data. In accordance with this observation, the Forest

authors designed a semantics for these mapping functions and proved the standard lens

laws: parsing and immediately deparsing should not change the state of the file system;

and deparsing, then parsing should return what was originally written.

Forest does not adequately deal with large filestores or allow incremental process-

ing. The authors side-stepped these concerns by using a lazy host language (Haskell).

However, it is quite easy for a user’s program to attempt to load the entire filestore into

memory. For example, if the user tries to check for errors at some level of the data object,

everything below that level is loaded. The formal semantics does not reflect the laziness

of an implementation, so it can be difficult to predict which operations have this effect

and which do not.

Our research on Incremental Forest [4] (iForest, presented in Chapter 3) was

designed to deal with these issues. This is a reworking of Forest to allow incremental

processing of only those pieces of the filestore required for the particular application in

question. The system enables precise and transparent control of costs related to parsing.

It features a delay construct to specify that a certain subtree of the filestore should only

be processed on demand. A tree-transformation language, that we call skins, enables

users to write a single specification with different delay behaviors and explore tradeoffs

between load-granularity and complexity. Additionally, iForest features a modular cost

model which admits user-specified notions of cost. As long as the user-provided cost

parameters have certain properties, then the cost of parsing decreases monotonically as

the number of delays increase. However, iForest does not help users with parallelization
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or the issues of concurrency.

We therefore designed Transactional Forest [3] (TxForest, presented in Chapter 5)

to provide a simple way for users to manage concurrency and to provide a more parsimo-

nious semantics for incrementality. Transactional Forest retains the specification language

of the original Forest, but moves to a novel backend and a new query/processing lan-

guage. In TxForest, each specification maps to a (tree) zipper, an elegant, functional

data structure, which represents a tree in mid-traversal. More specifically, a zipper

encapsulates the current node in focus and the path taken from the root to get there.

The processing language provides a nice way for users to traverse this structure and to

query or update the focus node.

This paradigm automatically enables maximal incrementality, by only parsing or

deparsing exactly what is necessary to reach the focus node of the zipper representing

the user’s filestore. Additionally, the paradigm permits incremental and light-weight

backend logging for an optimistic concurrency control scheme that supports serializable

transactions. By using TxForest as an interface to their filestore, users automatically get

serializable transactions with respect to other TxForest threads. Informally, serializability

ensures that the resulting filestore will be as though the TxForest transactions had run

in a serial order. This strong semantics makes it significantly easier for users to reason

about the correctness of their programs, predicated on the semantics of the file system,

which (unfortunately) tend to be informal. The system also cannot give any guarantees

with respect to other users of the file system.

The dearth of formal semantics for file systems and our wish to guarantee atomicity

in the presence of non-TxForest users motivated us to design the Zipper File System (ZFS,

presented in Chapter 6). ZFS is a transactional file system with a zipper as its backend.

It is inspired by Kiselyov’s work on a zipper file system [27]. ZFS takes a different tack

than our other work by requiring users to replace their file system. ZFS is motivated by
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our desire to allow concurrency control with respect to arbitrary users. Unfortunately,

POSIX file systems offer limited support for mandatory file locking, and such locks can

be circumvented [17]. At a similar upfront cost, users can switch over to ZFS to get the

stronger semantics.

ZFS provides provably serializable transactions with respect to arbitrary concurrent

users. It has a simple, formal semantics with a small interface upon which arbitrarily

complex commands (including the POSIX interface) can be built.

Together, ZFS and TxForest (and iForest too), vastly simplify the steps described

in Section 1.1, allowing domain experts to expend their efforts on the problems that

require domain expertise. In particular, by writing a declarative specification of the

filestore and using the TxForest interface, users automatically get parsers and deparsers,

which incrementally process their filestore as necessary and ensure serializability between

programs running concurrently. This leaves users with only the task of writing application

code and running analyses. Additionally, users can go a step further and use ZFS to

protect against concurrent execution by other users.

1.3 Contributions

In summary, this dissertation makes the following contributions:

• We motivate the need for and present the design and implementation of a domain-

specific language and tool for precisely controlling the cost of processing ad hoc

filestores (Chapter 3).

• We develop a denotational semantics for a domain-specific language for processing

ad hoc data in concurrent settings and prove serializability and round-tripping laws

in the style of lenses (Chapter 5).

• We design, formalize, and build a simple transactional file system based on zippers
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and provide a translation from POSIX into its semantics (Chapter 6).
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Chapter 2

Background

In this chapter, we introduce a running example to illustrate concepts used throughout

the dissertation. We design an application for this example looking at POSIX file systems

and previous work on PADS [8] (Processing Ad hoc Data Sources) and Forest [7].

For our running example, we use a simplified and idealized course management

system. Figure 2.1(a) shows a fragment of a filestore that we could use to track student

grades for a course, CS3110: Data Structures and Functional Programming. The top-level

directory (CS3110) contains a file (students) and a set of sub-directories, one for each

homework assignment (hw1–hw5). The students file gives the total number of enrolled

students, followed by a list of their NetIDs (Cornell’s unique identifier for its students

and employees). Each homework directory has a file for each student that contains their

grade on the assignment (e.g., aaa17), as well as a special file (max) with the maximum

possible score. Although this structure is simple, it closely resembles pieces of filestores

that have actually been used to keep track of grades at several universities.

There are several key invariants implicit in this structure:

Definition 2.0.1 (CS3110 Filestore Invariants). The CS3110 filestore is well-formed if

and only if the following invariants hold:

1. Well-Formed Students File. The number at the top of the students file should be

equal to the number of lines following it and each of those lines contain only a
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CS3110

students
322

aaa17

. . .

zzz23

hw1 . . . hw5

max
100

aaa17
40

. . .
zzz23
85

(a) Correct Filestore

CS3110

students
322

aaa17

. . .

zzz23

hw1 . . . hw5

max
100

bcd97
100

. . .
zzz23
85

(c) Violates Well-Formed HW Directories

CS3110

students
322

17aaa
. . .

zzz23

hw1 . . . hw5

max
100

aaa17
40

. . .
zzz23
85

(b) Violates Well-Formed Students File

CS3110

students
322

aaa17

. . .

zzz23

hw1 . . . hw5

max
100

aaa17
9001

. . .
zzz23

(┛ಠ_ಠ)┛彡┻━┻

(d) Violates Well-Formed HW Files

Figure 2.1: Examples of correct and incorrect filestore fragments that store course data.

NetID (i.e., some lowercase letters followed by a number). Figure 2.1(b) violates

this invariant.

2. Well-Formed HW Directories. Each homework directory should contain a file

named after each of those NetIDs. Figure 2.1(c) violates this invariant.

3. Well-Formed HW Files. For a given student and a given homework, if that student’s

homework has been graded, then the file with their NetID in that homework

directory should contain a number between 0 and the number contained in the max

14



file. If that student’s homework has not been graded, then the file should instead

contain a U. Figure 2.1(d) violates this invariant.

Though we use these invariants throughout the dissertation, there are other reasonable

choices of invariants. For example, perhaps our homeworks can have negative grades.

Perhaps we want to distinguish graded and ungraded homeworks in another way, e.g.

by making the grade of an ungraded homework −1. Regardless of the precise choice of

invariants, we would like any future application on this filestore to both maintain the

invariants and be robust to their breakage.

There are many operations that we want to execute on this filestore—like updating

the score of a student on a homework, computing various statistics, and normalizing

grades to fit a distribution—but we focus on an operation addStudent, which adds a new

student to the class. This operation is simple to understand, but captures most issues that

are addressed in this dissertation: It exercises every invariant noted above, illustrating

the need to capture both within-file and between-file invariants and dependencies. This

operation touches every interesting subtree of the filestore, but only a small portion of

the nodes, illustrating the need for fine-grained control. Finally, if multiple users try to

add a student at the same time, they can run into concurrency errors.

In the remainder of this chapter, we describe how to implement addStudent in plain

OCaml against a standard POSIX file system, with PADS, and with Forest.

2.1 File Systems

This section briefly introduces the POSIX file system interface and examines how to use

it to implement the example.

The Portable Operating System Interface (POSIX) defines a standard interface for

operating systems. This includes, among other things, a command interpreter with a
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standard set of utility programs and a file system interface. We use the term POSIX file

system to describe a file system that follows this standard [24].

POSIX file systems are ubiquitous: Most UNIX-based systems use POSIX file systems,

and every heavily used general-purpose programming language which we are aware of

includes libraries for interfacing with them. These libraries are thus frequently used to

interface with filestores, but are not well-suited for this task.

To illustrate this mismatch, we look at an implementation of the addStudent example

in a general-purpose language using the POSIX interface. We use OCaml as our general-

purpose language for the remainder of this dissertation.

let addStudent ~student () =
let (number,students) = get_students () in
if List.mem students student ~equal:String.equal
then failwithf "addStudent: Student %s already exists." student ()
else

let () = write_students (number+1,student :: students) in
List.iter (get_hws ()) ~f:(add_student_to_hw student)

In this code, addStudent takes a string (student) as input. This should be the NetID of

the student that we wish to add to the course. The operation uses a helper function,

get_students, to retrieve the current number of students and a list of their NetIDs

from the students file. It checks whether the given student is already enrolled in the

course, in which case it fails. Otherwise, it proceeds to use another helper function,

write_students, to update the students file. Finally, addStudent iterates through a list

of each homework (obtained through the auxiliary function get_hws) adding the new

student to each one using add_student_to_hw.

This seems simple enough, but most steps were performed by some auxiliary function

instead of using the POSIX interface directly. Let us take a look at these functions:
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let get_hws () =
Sys.readdir baseDir
|> Array.to_list
|> List.filter ~f:(String.is_prefix ~prefix:"hw")

let get_students () : (int * students) =
let student_file = In_channel.read_lines studentsFilePath in
let (number,students) = List.split_n student_file 1 in
number |> List.hd_exn |> int_of_string,students

let write_students ((number,students) : (int * students)) : unit =
Out_channel.write_lines

studentsFilePath
((string_of_int number) :: students)

let add_student_to_hw student hw =
Out_channel.write_all (studentPath hw student) ~data:"U"

This code utilizes functions that are only one level of abstraction above the POSIX

interface. The library function Sys.readdir combines POSIX’s opendir, readdir, and

closedir operations to return a list of the children of the input directory (a path given

by a string). The In_channel and Out_channel modules’ suites of reading and writing

functions respectively are similarly combining a set of POSIX primitives to provide a

convenient user interface. The constants baseDir and studentsFilePath contain the

path to the CS3110 directory and the students file respectively.

Note the brittleness of this solution. If the filestore looks different from Figure 2.1(a),

this code may fail at some unknown point, possibly having already executed a change to

the filestore. For example, if there is a file named hwstats in the base directory, we get

this error when trying to add a student with NetID mqf3:

(Sys_error "code/cs3110/hwstats/mqf3: Not a directory")

This is relatively easy to interpret, but the change to the students file, performed

before the failure, persists in the filestore. To resolve this, we need to write significant

error- and invariant-checking code. Consider this updated get_hws function:
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let get_hws_err () =
match Sys.is_directory baseDir with
| `No -> failwithf "get_hws_err: %s is not a directory" baseDir ()
| `Unknown -> failwith "get_hws_err: encountered an unknown error"
| `Yes ->

let hw_match s =
let hw_regexp = Str.regexp "hw[0-9]+$" in
Str.string_match hw_regexp s 0

in
Sys.readdir baseDir
|> Array.to_list
|> List.filter ~f:hw_match
|> List.filter ~f:(fun s -> Sys.is_directory_exn (hwPath s))

This version requires homework folders to be named hwX where X is an integer. Addition-

ally, it checks to make sure that each entry is a folder, skipping them otherwise. We might

instead wish to throw an exception to signal that something is wrong with the filestore.

In this case, we would also want to prevent the students file from being updated, which

means that we need to change the main function and possibly others. One option would

be to capture a set of changes to be made and only execute them when we know that

the union is correct.

One could imagine many other useful checks: We could make sure that a student

does not already exist or check that all of the expected invariants hold. We might want

to allow other files to coexist with the filestore (like the hwstats) or we might wish to

explicitly disallow this coexistence by checking that there are no other files and folders.

Either way, we need to write a lot of code beyond the core functionality to obtain truly

robust code. This is hard enough for a simple filestore like this one, but for more complex

filestores with more complex single-file ad hoc data formats, it gets significantly worse.

Indeed, just writing the parsing functions without any error checking is unmanageable.

The low-level nature of the POSIX interface and the commands derived from it is

behind the problems. The interface effectively controls the details of file processing, but

capturing the concept and processing of a filestore requires a considerable programming

effort.
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The low-level nature also makes it difficult to formally (or informally) verify the

correctness of application code, an issue exacerbated by the sheer size and complexity

of the POSIX interface. POSIX includes around 160 commands [25], all of which are

(under)specified in plain English as opposed to a formal language.

In principle, we could formalize the semantics of POSIX, but the low-level nature and

complexity make this a tricky proposition. Gardner et al. have done work on cutting down

the POSIX interface to a more manageable size and providing a formal semantics [15].

They identify 16 core commands from which most others can be built, and they design a

separation logic for reasoning about programs written against this interface. However,

not all of the complexity of POSIX is captured.

The problems inherent in using the POSIX interface for filestore processing, taken

together, lead us to consider other options. Our approach grants users a higher-level

abstraction, which should make it easier to write and reason about applications and

hopefully disentangle error-handling and core logic.

2.2 PADS

One such higher-level abstraction comes from prior work and is called PADS (Processing

Ad hoc Data Sources) [37]. PADS is a declarative domain-specific language and system

for processing ad hoc data. With PADS, users specify the shape of their per-file data and,

in return, get parsing and printing functions along with a variety of auxiliary tools. This

section takes a closer look at PADS and use the running example to illustrate some of its

functionality.

Users of PADS write declarative specifications of their data formats, teasing apart

their components by giving them names and types and some simple parsing directives,

like specifying that a list of similar elements should be separated by newlines and end

when the file does. The PADS system then uses this specification to generate format-
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specific parsing and printing functions that are robust both to file system and format

issues. The parse function, for example, is best-effort, attempting to parse as much of

the data as possible and replacing incorrectly formatted values with defaults. Any such

error is stored in metadata and is easily available to users as a precise error message.

In the example, both the students file format and the grade files in individual

homeworks benefit from the use of PADS. In PADS, we might write specifications for

these files as follows:1

pdatatype student =
| Ungraded of "U"
| Graded of [i : Pint | $i >= 0 && i <= 100$]

ptype netid = $RE "[a-z]+[0-9]+"$

ptype studentsFile =
{ number : [i : Pint | $i >= 0$]; "\n";
students : [sl : netid Plist("\n",EOF) | $List.length sl = number$ ]}

The student datatype describes student grade files. It says that such a file either contains

the constant string U, in which case it is ungraded, or an integer between 0 and 100, in

which case it is graded. The Graded description specifies a dependent type: It expects

an integer for which the expression on the right of the bar holds. The dollar signs denote

antiquotation, allowing users to escape back to the host language, OCaml. Note that this

does not take the max file into account, though we could do so by manually parsing it

and replacing the 100 with the result.

The studentsFile type describes the students file. It starts with a positive integer,

number, then a new line, followed by a list of NetIDs, students, separated by new lines

and terminated at the end of the file (EOF). Each NetID is described by the netid type,

which is a string matching the given regular expression. Additionally, we use dependent

types to enforce the invariant that the number is equal to the length of the students list.

The most obvious benefit of this specification is that it acts as documentation for the

1We created this version of PADS, which is available at https://github.com/padsproj/opads
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filestore. Ostensibly, it is understandable by humans. In fact, the specification acts as

living documentation. This documentation will stay up-to-date as the filestore format

changes because of a second benefit, which is the generated artifacts: These are (1) types

representing the file formats in memory; (2) functions to convert between file system

data and these types; and (3) additional tools like statistical aggregators and XML and

JSON converters. Here are a few of the artifacts from the specifications above:

type student_rep =
| Ungraded of unit
| Graded of int
type netid_rep = string
type studentsFile_rep = {

number: int ;
students: netid_rep list;

}

val student_default_rep : student_rep
val student_default_md : student_md
val student_parse: filepath -> (student_rep * student_md)
val student_to_string : (student_rep * student_md) -> string
val student_manifest : (student_rep * student_md) -> student_manifest

The representation types (ending in rep) are straightforward translations from the PADS

specification, but without the dependencies since these are not expressible in OCaml

types. Dependencies are instead captured as values in metadata, whose per-specification

types (ending in md) are also generated, but not shown here. The metadata records errors

encountered in parsing, metadata for sub-specifications as well as any extra information

that is necessary to reconstruct the original file from the representation.

For each specification, default representations and metadata are generated for use

when an error is encountered and as a starting point for construction of new files. The

parse functions parse the file at their input path according to the function’s specification

and return a representation and metadata. Conversely, the to_string functions use the

representation and metadata pairs to construct the contents of the file that they represent.

The manifest is a natural extension of this concept, preparing to store the in-memory
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structures on the file system. The resulting manifest type can inform users of potential

errors. This is most common in representations that do not match their specification, for

example by not meeting the requirements of the PADS dependent types as these are not

enforced by the OCaml types. Users can then use a PADS library function (pads_store)

to store the file described by the manifest at a given path.

We can now rewrite the code to use these artifacts in lieu of providing our own

brittle parsers, printers, and error handling:

let add_student ~student () =
let (rep,md) = studentsFile_parse studentsFilePath in
Pads.exit_on_error md;
if List.mem rep.students student ~equal:String.equal
then failwithf "add_student: Student %s already exists." student ()
else

let () = add_student_to_studentsFile student (rep,md) in
List.iter (get_hws ()) ~f:(add_student_to_hw student)

We use the generated studentsFile_parse function to parse the students file.

Since this function includes error handling, we then use the exit_on_error function

to exit after printing all errors, should any exist. Otherwise, as before, we make

sure that the student is not already enrolled before calling an auxiliary function,

add_student_to_studentsFile, to add the student to the students file. Finally, we

add the student to each individual homework folder.

As before, the auxiliary functions are doing a some of the heavy lifting. These

functions are more complex than their counterparts in the previous section, but they are

simultaneously more robust and, in some ways, more understandable:

let add_student_to_hw student hw =
student_manifest (student_default_rep,student_default_md)
|> Pads.exit_on_mani_error
|> pads_store (studentPath hw student)
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let add_student_to_studentsFile student (rep,md) =
let (students, students_md) =

Pads.insert_into_list
(student, netid_default_md)
(rep.students, md.pads_data.students_md)

in
let r = {number = rep.number+1; students} in
let m = {md with pads_data = {md.pads_data with students_md}} in
studentsFile_manifest (r,m)
|> Pads.exit_on_mani_error
|> pads_store studentsFilePath

The add_student_to_hw function constructs a new ungraded student using the default

representation and metadata, creates a manifest, and stores it.

The add_student_to_studentsFile function utilizes insert_into_list, a PADS

library function, to add a new student to both the representation and metadata of the

students list. This is helpful in making the two line up correctly. We then use the

updated lists to construct a new studentsFile representation and metadata pair, (r,m),

manually updating the number of the former. Finally, we construct a manifest and store

it back to the file system, exiting and printing any errors if we encounter them.

This approach resolves several of the earlier issues: We no longer need to create

our own parsing and printing functions. Additionally, we automatically enforce two

of our invariants: Well-Formed Students File and Well-Formed HW Files. If either is

violated, then our metadata will contain an error. Indeed, many other error scenarios

are automatically handled. While we choose to print any errors and exit in this example,

we could deal with their presence how ever we like, since they are easily accessible and

do not cause parsing failures.

However, the previously noted error case, where we add an additional file called

hwstats to the base directory, still causes the exact same issue. Further, we are on our

own when it comes to Well-Formed HW Directories. While PADS helps in processing

individual files, it does not let us talk about filestore level properties. The next system

that we explore attempts to resolve this concern.
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2.3 Forest

This section introduces prior work on Forest [7], a declarative domain-specific language

(DSL) for processing ad hoc filestores. We explore the benefits that Forest can provide

using the running example, and look at Forest’s syntax and semantics. Additionally, we

briefly introduce round-tripping laws in the style of bidirectional lenses [12] and give

their instantiation in Forest.

Forest has a higher-level view of an ad hoc data format than PADS, moving away

from single-source or single-file formats and instead considering an entire filestore. A

filestore is a collection of files and folders that come from the same source, that are

important to the same applications, or that represent a single concept. We consider the

relationships between the files and folders as part of the filestore: For example, in a Git

repository, there is a relation between the record that tracks files under version control

and those files.

We can use this broader view of data to capture the entirety of the example format.

We would do this by writing a Forest specification like this one:2

hw = directory {
max is "max" :: (pads pint);
students is [student :: (pads student)

| student <- matches RE "[a-z]+[0-9]+"]}

cs3110 = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: hw | name <- matches RE "hw[0-9]+"]}

The cs3110 specification describes the filestore in its entirety. At the top-level, we

have a directory containing two parts: The first is the student list as described by the

students file. The e :: s specification describes a filestore, which, at a path e conforms

to specification s. In our case, we state that the file students is described by the PADS

2We created this implementation of Forest, which is available at https://github.com/padsproj/
oforest

24

https://github.com/padsproj/oforest
https://github.com/padsproj/oforest


specification studentsFile. In the second part, we describe the homework directories

as a list of hws, one per path matched by the regular expression hw[0-9]+. Each hw is a

directory, which contains a max file (containing just an integer), and a list of student files

generated by the NetID regular expression.

In these specifications, each directory entry can depend on those preceding it. The

current specification does not use this to capture properties like enforcing the max score

through the max file or ensuring that every homework contains a student file if and only

if that student is enrolled. However, we could write an alternative specification that

does:3

hw (studentList : studentsFile_rep) = directory {
max is "max" :: (pads pint);
students is [student :: (pads student(max))

| student <- matches RE "[a-z]+[0-9]+"]
where $check_same_students this_md studentList.pstudents$}

cs3110 = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: hw(studentList) | name <- matches RE "hw[0-9]+"]}

In this version, the hw description takes a student file (parsed by PADS) as input. It

then uses Forest’s predicates (written “s where e” for specifications s and predicates

e) to assert that the files in the homework directory exactly match the NetIDs of the

enrolled students using an auxiliary function, check_same_students, that users would

be required to write. Additionally, the PADS specification student takes an integer as

input to determine the maximum allowable score.

Aside from serving as useful living documentation, the Forest system, as with PADS,

generates several useful artifacts from this specification. These include tools for filestore

visualization, querying, and shell tools along with types and functions like these:

3Unfortunately, our implementation of Forest does not support function specifications, but this is a
limitation of the implementation rather than of Forest itself.
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type hw_rep = { max: pint_rep ; students: student_rep list }
type cs3110_rep = { studentList: studentsFile_rep ; hws: hw_rep list }

val cs3110_load: filepath -> (cs3110_rep * cs3110_md)
val cs3110_manifest: ?p:filepath -> (cs3110_rep * cs3110_md) -> manifest

The Forest generated types and functions are similar to PADS: There are types

for the in-memory representations of each Forest specification. Additionally, there are

metadata types (not shown) which store information like errors, sub-metadata, and the

path at which the specification is loaded. They also contain various file attributes, like

those gathered from the stat command in POSIX. The load function loads a filestore

at an input path and returns its in-memory representation and metadata. The manifest

function goes in the opposite direction, optionally taking a path as an argument, which

allows users to store their filestore at a different location than where they loaded it from.

Using these functions, we can once more rewrite the code to the following:

let add_student ~student () =
let (rep,md) = cs3110_load baseDir in
Forest.exit_on_error md;
if List.mem rep.studentList.pstudents student ~equal:String.equal
then failwithf "add_student: Student %s already exists." student ()
else

add_student_to_filestore student (rep,md)
|> cs3110_manifest
|> Forest.exit_on_mani_error
|> store

The first thing to note is that we can now load the entire filestore with a single function.

This avoids error-prone auxiliary functions that manually locate the components of the

filestore. Secondly, though the Forest exit_on_error function essentially looks and acts

the same as the PADS version, it is accomplishing more, since the cs3110 specification

captures the entirety of the filestore and its properties, i.e. all three of the invariants listed

above are checked automatically. Similarly, among other benefits of the Forest manifest

function, it automatically solves the previous issue where the filestore could end up in

an inconsistent state due to an error occuring in the middle of the function. We still rely
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on an auxiliary, user-written function, add_student_to_filestore to implement much

of the functionality however:

let add_student_to_studFile student (rep,md) =
let (pstudents, pstudents_md) =

Pads.insert_into_list (student, netid_default_md)
(rep.studentList.pstudents,
md.data.studentList_md.data.pads_data.pstudents_md)

in
let (studentList, studentList_md) =

set_pstudents_in_studentList ~number:(rep.studentList.number + 1)
(pstudents, pstudents_md)
(rep.studentList, md.data.studentList_md)

in
set_studentList (studentList, studentList_md) (rep,md)

let add_student_to_every_hw student (rep,md) =
let add_student_to_hw (hw_rep, hw_md) =

let path = get_path_exn hw_md in
let student_md =

PadsInterface.new_pads_to_forest
student_default_md (path ^/ student)

in
let (students, students_md) =
Forest.insert_into_comp

(student_default_rep, student_md)
(hw_rep.students, hw_md.data.students_md)

in
set_students_in_hw (students, students_md) (hw_rep,hw_md)

in
map_hws ~f:add_student_to_hw (rep,md)

let add_student_to_filestore student (rep,md) =
add_student_to_studFile student (rep,md)
|> add_student_to_every_hw student

Instead of storing on their own, auxiliary functions place new data into the existing

representation and metadata structures. This lets us leverage type safety to enforce

filestore-level properties and centralizes and batches the file system writes. On the other

hand, the parts that we wish to add are sometimes deeply nested in the data structure, so

they are tedious to add manually. The functions starting with set_ simplify this process

significantly and are straightforward to create (or generate).
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We have discussed how the generated artifacts—and even the specification—simplify

writing applications against a filestore, e.g. by handling errors, invariance checking, and

obviating the need for user-written parsing. However, it is not clear how loading and

storing functions should behave in the absence of errors. We might have some intuition

about how these should work, but translating that understanding to something that the

computer understands, or formalizing the correct behavior can be non-trivial. Part of the

difficulty arises from the asymmetry between three representations: the specification, the

on-disk data, and the in-memory data. The specification captures high-level properties

describable by dependent types, while the in-memory structures have no such facility.

The on-disk data is essentially untyped, losing even more information. Furthermore, the

specification and in-memory representation can quite easily describe filestores that could

not exist on a standard file system. Consider the following specification:

bad_dir = directory {
foo1 is "foo" :: file;
foo2 is "foo" :: directory { ... }

}

In a POSIX file system, the same path cannot be both a file and a directory, so this is

clearly nonsense (and would indeed signal an error if loaded at any path). We may also

have a sensible, albeit odd, specification with a matching in-memory representation that

could not possibly exist on-disk:

ok_dir = directory {
foo1 is "foo" :: file;
foo2 is "foo" :: file

}

let bad_rep = {foo1 = "A string"; foo2 = "A different string"}

While a single file could be specified twice in a specification, it cannot simultaneously

have two different contents. The core of the issue lies in the difference among the

representations: The data of every on-disk filestore can be captured by an in-memory

representation, but multiple in-memory representations could map to the same on-disk
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Paths p ::= · | p/u
Contents C ::=File u | Link p | Dir ℓ
File Systems fs ::= {|p1 7→ (a1,C1), . . . , pn 7→ (an ,Cn) |}
Specifications s ::= k τ2

τ1
| e :: s | ⟨x :s1, s2⟩ | [s | x ∈ e] | P(e) | s?

Figure 2.2: Forest Syntax

data. Similarly, every in-memory representation has a corresponding specification (by

definition, since the former is generated from the latter), but multiple specifications map

to the same in-memory representation (due to dependent types).

The authors of Forest resolve the questions raised by this disparity by ensuring that

their semantics satisfies round-tripping laws. These are borrowed from literature on

bidirectional lenses [12] and were first used to resolve the View-Update problem in

databases, which concerns a similar disparity. In Forest, we can think of loading and

storing functions as providing a lens that the data can pass through. On one side of the

lens, we have the on-disk representation; on the other, the in-memory representation.

The lens itself is encompassed by the specification. By passing through the lens, the

data changes from one format to the other. Two round-tripping laws are used in Forest.

Informally, the first states that if we load on-disk data and then immediately store it

back, the file system should not change, nor should the manifest have errors. The second

states that if we store an in-memory representation, whose manifest did not have errors,

and then load it immediately after, we should get back what we stored.

In order to show that Forest actually obeys these laws, we must introduce some

formalism. This formalism will additionally be helpful in future chapters, which extend

and contrast the semantics of Forest in various ways.

Figure 2.2 contains the syntax of Forest. A path is modeled as a sequence of strings.

There are three possible contents C of a file system node: (1) a file with the string it

contains (File u); (2) a symbolic link with the path it points to (Link p); or (3) a directory

with the names of the set of children it contains (Dir ℓ). File systems are maps from paths
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to attribute and content pairs. Attributes a represent the metadata of a node and should

be thought of as roughly the results of a POSIX stat command.

We only consider well-formed file systems, which model trees where every inner

node is a directory:

Definition 2.3.1 (Well-Formedness). A file system fs is well-formed if and only if:

1. fs(/) = Dir _ (where / is the root node), and

2. p/u ∈ fs ⇐⇒ fs(p) = Dir ℓ ∧ u ∈ ℓ

The specification surface language used in the examples above translates to the core

specification language shown in Figure 2.2. Each specification s describes properties

about a filestore with respect to the current path in the current file system (both given by

the context). The k τ2
τ1

specification captures the base types of the language with τ1 and τ2

being the representation and metadata types respectively. We consider constants File,

Link , and Dir for files, links, and directories as representing their constant types. For

example, File = k unitstring and a file at the current path conforms to that specification. Paths

e :: s describe filestores conforming to s at the current path extended by e. Options s?

capture optional filestores: Either the current path has a filestore conforming to s or it is

unmapped in the file system. Dependent pairs ⟨x :s1, s2⟩ describe filestores that conform

to both s1 and s2, though the subexpressions of s2 can access the filestore described by

s1. The directory construct in the surface language is translated into a nested pair.

Predicates P(e) describe filestores for which property e holds. These are usually used

with dependent pairs to construct dependent types since this is the only way to refer

to the data of the filestore. Finally, comprehensions [s | x ∈ e] describe filestores that

conform to s for each value in set e bound to x . These bound variables can change the

specification s by influencing its subexpressions.

Figure 2.3 defines the RJ·K and MJ·K semantic functions, which take a specification

as input and return the corresponding representation and metadata types respectively.
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s RJsK MJsK

k τ2
τ1

τ1 τ2 md

e :: s RJsK MJsK
⟨x :s1, s2⟩ RJs1K ∗ RJs2K (MJs1K ∗MJs2K) md
[s | x ∈ e] RJsK list MJsK list md

P(e) unit unit md

s? RJsK option (MJsK option) md

Figure 2.3: Forest representation and metadata type semantic functions

For most specifications, the types are derived from their sub-specifications: Paths are

ignored, pairs are pairs, comprehensions are lists, and options are options. For constants

k τ2
τ1

their types are included in the syntax with τ1 and τ2 respectively. Finally, predicates

are not reflected in the representation. Instead, conformance to a predicate would be

reflected by the lack of an error in the metadata. In the Forest calculus, the only metadata

that we track is a boolean signaling errors per specification level so α md = bool ∗ α.

Figure 2.4 defines the semantics of the load function. If loading specification s in

environment E at a path p in file system fs returns the representation and metadata

pair (r ,md), then the judgment E ⊢ load (fs , p, s)� (r ,md) holds. Constants k τ2
τ1

have

their own associated load functions, loadk(E , fs , p). Path specifications e :: s navigate to

the path that e evaluates to in E , before loading their sub-specification s. Dependent

pairs ⟨x :s1, s2⟩ load their first component, adding the results to the environment as x

and xmd , before loading the second component. The error-signaling boolean b, which

is true when there are no errors, is then just the conjunction of the booleans of the

sub-operations. Comprehensions [s | x ∈ e] evaluate their expression e into a list and

load their sub-specification s once per element of that list, adding the element to the

environment as x . Predicates P(e) store their value in the metadata, while options s?

either evaluate their sub-specification or return an empty option depending on if the

path is mapped.
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E ⊢ load (fs , p, k τ2
τ1
)� loadk(E , fs , p)

E ⊢ load (fs , Jp/eKEfilepath, s)� (r ,md)

E ⊢ load (fs , p, e :: s)� (r ,md)

E ⊢ load (fs , p, s1)� (r1,md1)
(E , x 7→ r1, xmd 7→ md1) ⊢ load (fs , p, s2)� (r2,md2)

b = ((π1 md1) ∧ (π1 md2))

E ⊢ load (fs , p, ⟨x :s1, s2⟩)� ((r1, r2), (b, (md1,md2)))

JeKEα list = [w1, . . . , wn ]
∀i ∈ {1, . . . , n}.(E , x 7→ wi) ⊢ load (fs , p, s)� (ri,md i)

b =
∧n

i π1 md i rs = [r1, . . . , rn ] mds = [md1, . . . ,mdn ]

E ⊢ load (fs , p, [s | x ∈ e])� (rs, (b,mds))

b = JeKEbool
E ⊢ load (fs , p,P(e))� ((), (b, ()))

p ∈ dom(fs) E ⊢ load (fs , p, s)� (r ,md)

E ⊢ load (fs , p, s?)� (Some(r), (π1 md , Some(md)))

p ̸∈ dom(fs)

E ⊢ load (fs , p, s?)� (None, (true, None))

Figure 2.4: Forest load function semantics

Figure 2.5 defines the semantics of the store function. If storing (r ,md) as s in

E at p in fs would yield a new file system fs ′ and a validator φ′, then the judgment

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′) holds. The validator corresponds to the manifest that

we saw earlier. Here, it is represented as a function on file systems returning true if the

representation and metadata was successfully stored. The validator additionally checks

whether the representation and metadata are consistent with each other. Constants, paths,

and predicates are similar to loading. For pairs, we first get two file systems by storing

each component individually, then we use the right-biased file system concatenation

operator ++ to combine them. Intuitively, this operation copies all contents from the

second argument to the first, overwriting any contents that they have in common. The
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E ⊢ store (fs , r ,md , p, k τ2
τ1
)� storek(E , fs , p, r ,md)

E ⊢ store (fs , r ,md , Jp/eKEfilepath, s)� (fs ′, φ′)

E ⊢ store (fs , r ,md , p, e :: s)� (fs ′, φ′)

md = (b, (md1,md2)) r = (r1, r2)
E ′ = (E , x 7→ r1, xmd 7→ md1)
b ′ = (b = (π1 md1) ∧ (π1 md2))

E ⊢ store (fs , r1,md1, p, s1)� (fs1, φ1)
E ′ ⊢ store (fs , r2,md2, p, s2)� (fs2, φ2)

φ′ = (λfs ′.b ′ ∧ φ1(fs
′) ∧ φ2(fs

′))

E ⊢ store (fs , r ,md , p, ⟨x :s1, s2⟩)� (fs1++fs2, φ
′)

rs = [r1, . . . , rj] mds = [md1, . . . ,md l]
JeKEα list = [w1, . . . , wm] n = min(j, l,m)
b ′ = (b =

∧n
i π1 md i) ∀i ∈ {1, . . . , n}.

(E , x 7→ wi) ⊢ store (fs , ri,md i, p, s)� (fs i, φi)
φ′ = (λfs ′.(j = l = m) ∧ b ′ ∧ (

∧n
i φi(fs

′)))
fs ′ = fs1++ . . .++fsn

E ⊢ store (fs , rs, (b,mds), p, [s | x ∈ e])� (fs ′, φ′)

φ′ = λfs ′.b = JeKEbool
E ⊢ store (fs , (), (b, ()), p,P(e))� (fs , φ′)

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′)
φ1 = (λfs ′.(b = π1 md) ∧ p ∈ dom(fs) ∧ φ′(fs ′))

E ⊢ store (fs , Some(r), (b, Some(md)), p, s?)� (fs ′, φ1)

φ′ = (λfs ′.md = None ∧ b ∧ p ̸∈ dom(fs ′))

E ⊢ store (fs , None, (b,md), p, s?)� (fs [p 7→ ⊥], φ′)

E ⊢ store (fs , r ,md s
default, p, s)� (fs ′, φ1)

φ′ = λfs ′.false

E ⊢ store (fs , Some(r), (b, None), p, s?)� (fs ′, φ′)

Figure 2.5: Forest store function semantics
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validator ensures that the boolean part of the metadata matches that of its components

and that the individual validators still hold. Comprehensions use the minimum length of

the representation, metadata, and expression evaluation lists to perform the storing, but

check equality in the validator. Options are straightforward, except for handling cases

where the representation and metadata do not match. In these cases, the validator will

be false, but the file system will be updated as specified by the representation.

Using the semantics, we can now formally state the round-tripping laws as follows:

Theorem 2.3.2 (LoadStore). Let E be an environment, fs and fs ′ file systems, p a path, s

a specification, r a representation, md a metadata, and φ′ a validator. If

E ⊢ load (fs , p, s)� (r ,md)

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′)

then fs = fs ′ and φ′(fs ′).

Theorem 2.3.3 (StoreLoad). Let E be an environment, fs and fs ′ file systems, p a path, s

a specification, r and r ′ representations, md and md ′ metadata, and φ′ a validator. If

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′) φ′(fs ′)

E ⊢ load (fs ′, p, s)� (r ′,md ′)

then (r ,md) = (r ′,md ′).

The first theorem (Theorem 2.3.2) states that loading, then storing the result, will

produce an unchanged file system, which satisfies the validator. The second (Theo-

rem 2.3.3) states that if we store a valid representation and metadata pair, we will get

the same pair back if we load. This wraps up the discussion of the formalism of Forest.

We have already discussed how Forest solves several issues that we identified

previously, like allowing us to avoid inconsistencies by specifying the whole filestore

and checking our invariants for us, but challenges remain. Firstly, though there are
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clearly advantages to the full filestore view, actually loading the whole filestore can

be impractical e.g. due to the high cost of disk reads or because it is larger than the

memory available. The original Forest partially side-steps this problem by using a lazy

host language (Haskell). Unfortunately, it is sometimes difficult for users to predict what

their code will load. Secondly, concurrency is pervasive in file systems and Forest offers

few advantages in dealing with the issues that arise from it.

The next chapter tackles the former problem. We describe the first of the domain-

specific languages designed for this dissertation, Incremental Forest. Incremental Forest

allows users to manipulate and process large ad hoc filestores with precise control over

the costs incurred.
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Chapter 3

Incremental Forest:

A DSL for Efficiently Managing Filestores

This chapter is based on joint work with Richard Zhang, Erin Menzies, Kathleen

Fisher, and Nate Foster published in OOPSLA ’16 [4].

Brief Summary

File systems are often used to store persistent application data, but manipulating file

systems using standard APIs can be difficult for programmers. Forest is a domain-specific

language that bridges the gap between the on-disk and in-memory representations of file

system data. Given a high-level specification of the structure, contents, and properties of

a collection of directories, files, and symbolic links, the Forest compiler generates tools

for loading, storing, and validating that data. Unfortunately, the initial implementation

of Forest offered few mechanisms for controlling cost—e.g., the run-time system could

load gigabytes of data, even if only a few bytes were needed. This chapter introduces

Incremental Forest (iForest), an extension to Forest with an explicit delay construct that

programmers can use to precisely control costs. We describe the design of iForest using a

series of running examples, present a formal semantics in a core calculus, and define

a simple cost model that accurately characterizes the resources needed to use a given
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specification. We propose skins, which allow programmers to modify the delay structure

of a specification in a compositional way, and develop a static type system for ensuring

compatibility between specifications and skins. We prove soundness and completeness

of the type system as well as a variety of algebraic properties of skins. We describe

an OCaml implementation and evaluate its performance on applications developed in

collaboration with watershed hydrologists.

3.1 Introduction

Previous work on Forest [7] proposed a collection of type-based abstractions for de-

scribing the structure, contents, and properties of file system data. With Forest, the

programmer writes a high-level specification that describes the expected organization

of a collection of directories, files, and symbolic links—a filestore—and the compiler

automatically generates a datatype to represent the data in memory, accompanying load

and store functions that map between on-disk and in-memory representations, and a

suite of generic validation, visualization, and summarization tools. Hence, Forest allows

applications to be written against high-level datatypes rather than low-level APIs, and it

provides mechanisms for automatically checking assumptions about filestores.

Unfortunately, while Forest offers powerful abstractions for describing and trans-

forming filestores, it lacks mechanisms for controlling the costs associated with using

a specification, such as the amount of data read from or written to the file system, the

number of file descriptors opened, and so on. A direct implementation of the language

would suffer from serious performance problems. For example, it is straightforward to

write a recursive universal specification in Forest that matches all of the files, directories,

and symbolic links reachable from the root, but loading the entire file system into mem-

ory would not be feasible! Some of these issues can be side-stepped in a lazy language

(the initial version of Forest was built in Haskell), but reasoning about cost remains a
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challenge.

This chapter presents an extension to Forest that retains the features of the original

language while offering programmers precise control over costs. Compared to the

original version of the language, the main new feature provided in iForest is a delay

construct that allows programmers to specify that certain pieces of a filestore should not

be loaded or stored, unless explicitly requested by the programmer. At a technical level,

a delayed specification differs from the un-delayed version in several important ways:

First, rather than returning the actual value stored on the file system, the load function

for a delayed specification returns a cursor that can be subsequently loaded (or stored)

using a simple monadic interface. The types for the in-memory representation and the

store function are similarly modified to reflect the fact that the value returned by the

load function is a cursor and not an ordinary value. Second, a delayed specification has

constant cost—e.g., the load function returns immediately, without reading any data

from the file system.

In general, there are many ways to add delays to a given iForest specification. With

no delays, the application can manipulate values stored on the file system directly, as in

Forest, but costs are coarse-grained. Alternatively, if one adds a delay at every level of

the specification, then the application becomes more complicated because the type for

the in-memory representation contains cursors at every level of structure. However, the

cost of using the load and store functions becomes pay-as-you-go. In between these two

extremes, one can add delays at different levels of granularity, making tradeoffs between

the simplicity of the in-memory representation and the degree of control over costs.

To allow programmers to use the same base specification with different delays, we

develop an expressive skin language that can be used to adjust the delay structure of a

specification in a compositional way. We provide a parametric cost model, which can

be instantiated to reason about several different types of costs. We show that costs
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monotonically decrease as delays are added to a specification. We also develop a static

type system that ensures compatibility between a given skin and specification.

To evaluate our design for iForest, we define a formal semantics for the language,

and we prove a number of properties including round-tripping laws and natural algebraic

properties of skins. We develop an iForest specification for the Soil and Water Assessment

Tool (SWAT) [39], a modeling framework used by watershed hydrologists to quantify

the impacts of various changes to the features of a watershed. SWAT stores persistent

information in a filestore with tens of megabytes of structured files. We develop two

real-world applications using iForest: one to calibrate a SWAT model against an external

data set and another to predict the effects of land use changes such as changing the

type of fertilizer used on farms. We conduct experiments showing that iForest leads to

significant performance improvements over a naïve implementation that loads the entire

filestore into memory.

Overall, the contributions of this chapter are as follows:

• We make the case for developing domain-specific tools for filestores that offer

precise control over cost.

• We present iForest, a system that realizes these goals as an embedded domain-

specific language in OCaml.

• We introduce skins, establish their formal properties, and show their utility on a

variety of examples.

• We describe a prototype implementation of iForest and evaluate its performance

on several SWAT applications.

The rest of this chapter is structured as follows. Section 3.2 motivates iForest’s

design and presents an overview of its main features. Section 3.3 presents the design of

iForest and defines the syntax and semantics of the language. Section 3.4 introduces a
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CS3110

students
322

aaa17

. . .

zzz23

hw1 . . . hw5

max
100

aaa17
40

. . .
zzz23
85

Figure 3.1: Example: filestore fragment used to store course data

dynamic cost model. Section 3.5 presents the skin language. Section 3.6 describes our

experiences building various applications in iForest as well as quantitative experiments

on SWAT data. We conclude in Section 3.7. Appendix A formalizes the main features of

iForest in a core calculus and presents theorems and proofs.

3.2 Overview

This section motivates the design of iForest by using the running example introduced

in Chapter 2. Recall the filestore fragment shown in Figure 3.1. The top-level directory

(CS3110) contains a file (students) and a set of sub-directories, one for each homework

assignment (hw1–hw5). The students file gives the total number of enrolled students,

followed by a list of their NetIDs (Cornell’s unique identifier for its students and employ-

ees). Each homework directory has a file for each student that contains their grade on

the assignment (e.g., aaa17), as well as a special file (max) with the maximum possible
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score. There is a dependency between students and the homework directories—the

former should contain the names of most of the files in the latter.

Forest Implementation. Forest [7] is a domain-specific language that provides a col-

lection of type-based abstractions designed to support programming with filestores. With

Forest, the programmer writes a specification of the expected structure, contents, and

properties of a filestore. The compiler automatically generates a type for representing the

data in memory, load and store functions, and a suite of other generic tools. Recapping

our presentation in Section 2.3, we could use the following Forest specification to specify

the structure of our example filestore:

hw (studentList : studentsFile_rep) = directory {
max is "max" :: (pads pint);
students is [student :: (pads student(max))

| student <- matches RE "[a-z]+[0-9]+"]
where $check_same_students this_md studentList.pstudents$}

cs3110 = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: hw(studentList) | name <- matches RE "hw[0-9]+"]}

To a first approximation, specification cs3110 can be thought of as a type that

describes the expected structure and contents of a file system at a given path. The

directory construct (directory{. . . }) specifies that the file system node at the initial path

should be a directory whose contents are modeled by the nested specifications. The in-

memory representation for a directory is a record—in this case, with fields studentList

and hws that are associated with the representations of the nested specifications. The

path construct ("students" :: (pads studentsFile)) navigates to the specified path

(students), while the PADS primitive (pads) specifies that the node at that path is

represented by a PADS specification. The representation for a path is the representation

for its nested specification. A comprehension specifies a collection of values—in this

case, the homework directories at paths given by the regular expression hw[0-9]+.
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The representation for a comprehension is a list. Note that the hw specification is

parameterized by, and thus dependent on, the students file. The notation $...$ at the

end of the hw specification denotes that the enclosed code comes from the host language.

In this case, we are ensuring that the homework directory correctly contains exactly the

students listed in the students file.

Given this specification, the Forest compiler automatically generates a collection of

artifacts including:

• Two types hw_rep and cs3110_rep for the in-memory representations:

type hw_rep = { max: pint_rep ; students: student_rep list }
type cs3110_rep = { studentList: studentsFile_rep ; hws: hw_rep list }

• Two types hw_md and cs3110_md for associated metadata:

type 'a md =
{ num_errors:int;

error_msg:string list;
info:file_info option;
load_time:Time.Span.t;
data:'a }

type hw_md =
{ max_md: pint_md md ;

students_md: ((student_md md) list) md }
and cs3110_md =

{ studentList_md: studentsFile_md md ;
hws_md: (hw_md list) md }

where 'a denotes a polymorphic type variable.

• Functions cs3110_load and cs3110_store that map between the on-disk and in-

memory representations:

val cs3110_load: filepath -> (cs3110_rep * cs3110_md)
val cs3110_store: filepath -> (cs3110_rep * cs3110_md) -> unit

and the same for the hw specification.
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These functions automatically check for errors and internal inconsistencies in the data,

returning useful information to the programmer even when the underlying filestore is

malformed. For example, the following program implements a simple application that

loads the filestore and adds a single student with NetID student to it:

let (rep,md) = cs3110_load path in
Forest.exit_on_error md;
if List.mem rep.studentList.pstudents student ~equal:String.equal
then failwithf "add_student: Student %s already exists." student ()
else

add_student_to_filestore student (rep,md)
|> cs3110_store

This implementation provides a way to gracefully handle errors. For example, if hw6

were a file rather than a directory, creating an internal inconsistency in the data, we

would get the following output,

Failure "Path <path>/hw6 is not a directory"

rather than a confusing run-time exception.

Forest Limitations. Forest’s abstractions go a long way toward streamlining the task

of developing applications that use file systems for storing persistent data. However,

the language suffers a key limitation that makes it difficult to use in practice and leads

to poor performance: it lacks mechanisms for controlling cost. If the filestore contains

many large files, then naïvely loading the contents of those files into memory might

exceed the resources available on the machine. A better alternative would be to allow

the programmer to choose which files should be loaded eagerly and which ones should

be loaded on-demand, but Forest does not provide a way to make such tradeoffs.

Incremental Forest. iForest is an extension to Forest that offers new mechanisms for

controlling costs associated with using a given specification. The main innovation in

iForest is a new delay construct that can be used to indicate that a certain sub-specification
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should be loaded lazily rather than eagerly. For example, the following specification

delays the loading of every homework specification in the cs3110 directory by wrapping

hw(studentList) with angle brackets, iForest’s notation for the delay construct (shaded

here in gray):

cs3110a = directory {
studentList is "students" :: (pads studentsFile);

hws is [name :: <hw(studentList)> | name <- matches RE "hw[0-9]+"]}

From this specification, the iForest compiler generates a representation type where hws

contains cursors that must be explicitly forced to obtain the file system data.

type cs3110a_rep =
{ studentList: studentsFile_rep;

hws: ((hw_rep, hw_md) cursor) list }

This cs3110a_rep type gives the programmer the flexibility to dynamically load only

the files that are needed for the application. For example, to implement the same

functionality as before, we could use the following program:

let%bind cur = cs3110a_new path in
let%bind (rep,md) = load cur in
Forest.exit_on_error md;
let%bind (rep,md) =

if List.mem rep.studentList.pstudents student ~equal:String.equal
then failwithf "add_student: Student %s already exists." student ()
else add_student_to_filestore student (rep,md)

in
store cur (rep,md)

This program is very similar to the previous version, but has a few key differences. First,

rather than having to invoke a specific load function, we use a polymorphic load and

store function that takes a cursor as an argument. We create a new cursor using the

function cs3110a_new. Second, we use a monad to keep track of the state of cursors

as they are used to incrementally navigate within the file system and load data. The

operator let%bind is a shorthand for sequencing computation with the standard monadic

bind operation.
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However, the most interesting part happens in add_student_to_filestore’s sub-

routine, which maps through the homework directories, adding the given student to

each one. In Forest, our sub-routine looks as follows:

let map_hws ~f (rep,md) =
let (hws,hws_md) =

let (hws,data) =
List.zip_exn rep.hws md.data.hws_md.data
|> List.map ~f
|> List.unzip

in
(hws, {md.data.hws_md with data})

in
set_hws_in_cs3110 (hws,hws_md) (rep,md)

Here, we map over a hws comprehension, applying a function f. We first make a new

hws representation and metadata pair by zipping the old version together, mapping over

the list and subsequently unzipping it. We do it this way to make sure that we keep track

of the representation and its associated metadata. Finally, we use the auxiliary function

set_hws_in_cs3110, which properly updates the hws portion of the full filestore. This

is simply due to the difficulty of remembering the exact record path that we want to

update, as can be intuited from the long record paths in the rest of the function.

In Incremental Forest, we might instead write something like this:

let map_hws_inc ~f (rep,md) =
let apply cur acc =

acc >>= fun () -> load cur
>>= f >>| store cur

in
let%map () = List.fold_right ~init:(return ()) ~f:apply rep.hws in
(rep,md)

Here, our function can safely ignore the md.data.hws_md.data used in the previous

version, because the cursors in rep.hws carry all of the information necessary to get

their associated metadata. Thus, we fold over the cursors, and for each cursor cur we

load it, apply function f and then store it back. Here, we show another way of invoking

the standard monadic bind operation (>>=) to sequence computation and two ways of
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invoking the monadic map. Note that we start from the accumulator each time, even

though it is an empty unit. This allows continuously threading the state of our entire

computation through our monad, which is important for our cost calculation. Finally, we

return the representation and metadata unchanged to more closely match the signature

of the previous version.

The advantage of this method is that, rather than loading every homework from

the file system at once, we can load them incrementally, in a streaming fashion. This

means that at any given time, the system only needs to represent the contents of a

single homework in memory, and the garbage collector could reclaim the memory for

previously-loaded homeworks. We could even avoid loading certain homeworks entirely—

e.g., those satisfying some predicate—by filtering rep.hws before folding over it, which

would have significant performance benefits.

Skins. In general, there can be many different ways of adding delays to an iForest

specification, depending on application needs. Some applications may wish to process

file system data in larger chunks, while others may need fine-grained control over costs.

Requiring programmers to write a new specification for every combination of delays that

might arise would be tedious and create a software maintenance nightmare. Instead,

iForest offers a skin language that programmers can use to modularly adjust the delay

structure of an underlying base specification. The skin language is based on a select-

and-transform paradigm in which the programmer first navigates the type structure of a

given iForest specification and then manipulates the delays at that node. The primitive

⟨ ⟩ adds a delay while ⟩ ⟨ removes a delay. Because the skin language supports recursion

and a rich collection of type patterns, it is relatively easy to succinctly describe many

common transformations. For example, the skin

delayAll = ⟨ ⟩; map(delayAll)

delays every node while the skin
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delayFiles = ⟨ ⟩|file + map(delayFiles)

only adds delays at file nodes. The map operator applies its sub-skin recursively, while

the union operator (+) applies its left sub-skin if possible and otherwise applies its right

sub-skin. The restriction operator (|) applies its sub-skin if a predicate (file) is satisfied.

We have found skins invaluable in developing iForest applications.

3.3 Incremental Forest

Incremental Forest (or iForest) extends Forest with a new delay operator ⟨s⟩ that prevents

loading (and storing) of s unless explicitly forced by the programmer. This feature gives

programmers precise control over costs without sacrificing the ability to write declarative

filestore specifications.

At first glance, the delay operator appears quite simple. We extend the syntax of

the language with delays, written ⟨s⟩, and let the representation and metadata types for

⟨s⟩ be unit and unit md respectively to reflect the fact that no processing occurs when

a delayed specification is used. However, while the core elements of this design are

basically right, there are a few subtle design issues that need to be addressed to make

delays usable for programmers.

Cursors. The first issue with the design just described is that it requires programmers

to manually invoke load functions for each delayed sub-specification forced by their

application. Doing this correctly is tedious for programmers, since they will have to

remember the names of the correct load functions to invoke. To illustrate, recall our

running example and suppose that we decide to add a delay to the comprehension:

cs3110b = directory {
studentList is "students" :: (pads studentsFile);
hws is <[name :: hw(studentList) | name <- matches RE "hw[0-9]+"]>}

If we invoke cs3110b_load, we get a representation:
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{ studentList = "10\njd753\n..."; hws = () }

Then, to obtain a list of homeworks, we have to invoke the load function for the

comprehension. But now there is a problem: the comprehension does not have a name

so the iForest compiler does not generate a top-level function for it! We could modify the

compiler to generate load and store functions for each delayed specification, but the

programmer would still need to remember the name of the function to invoke as well as

the file system path to supply to that function.

To address this problem, we introduce cursors, which encapsulate the load and

store functions associated with iForest specifications. The iForest run-time system

defines a parameterized type for cursors (parameterized on the representation and

metadata types) and polymorphic load and store functions.

type ('r,'m) cursor
val load : ('r, 'm) cursor -> 'r * 'm
val store : ('r, 'm) cursor -> 'r * 'm -> unit

Unlike the specification-specific load and store functions generated by the Forest com-

piler, these functions can be used with cursors of any type. To construct cursors, the

iForest compiler generates a new function for each top-level specification s:

val s_new : filepath -> (s_rep, s_md) cursor

Returning to our example, if we invoke the load function:

load (cs3110b_new path)

we now get a representation

{ studentList = "10\njd753\n..."; hws = cur }

where cur represents the cursor for the delayed comprehension, which can be loaded:

load cur

to yield the representation:

[{max = 100; students = [Graded(78); Ungraded; ...]};...]
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Cursors encapsulate the run-time details related to incremental navigation of a filestore,

which greatly simplifies writing applications using iForest. To minimize overhead and

support streaming computations using iForest, cursors do not cache results. We plan to

investigate alternative approaches (e.g., call-by-need semantics) in the future.

Monadic Interface Another issue with the simple design for iForest described above is

that it forces results to be computed incrementally, which complicates applications. For

representations and metadata, this is unavoidable—being able to operate incrementally

is precisely why we designed iForest!—but it would be convenient if the run-time would

aggregate other kinds of data automatically. In particular, we would like to be able to

choose when data will be produced incrementally and when it will be aggregated.

To that end, we borrow a standard approach to encapsulating effectful computation

from functional languages. Specifically, we define a monadic interface for iForest’s load

and store functions. As an example, suppose we extend the load function to additionally

return the number of file system nodes accessed during loading, giving it the type:

val load : ('r,'m) cursor -> 'r * 'm * int

Now suppose we invoke the load function using the top-level and delayed cursors in

sequence:

let cur = cs3110b_new path in
let rep1,md1,n1 = load cur in
let rep2,md2,n2 = load rep1.hws in
...

Note that we have to track n1 and n2 explicitly. We would have to compute their sum

to obtain the desired result—an error-prone program structure, especially in larger

applications. Instead, we can endow iForest with a monadic interface:

val s_new : filepath -> ((s_rep, s_md) cursor) CursorM.t
val load : ('r,'m) cursor -> ('r * 'm) CursorM.t
val store : ('r,'m) cursor -> ('r * 'm) -> unit CursorM.t

50



The module CursorM is a standard state monad that encapsulates the costs (represented

as integers) associated with using iForest cursors:

module CursorM = struct
type 'a t = int -> ('a * int)
let return (x:'a) : 'a t = fun n -> (x,n)
let bind (m:'a t) (f:'a -> 'a t) : 'a t =

fun n -> let (x,n') = m n in f x n'
let run (m:'a t) : 'a * int = m 0

end

With this interface (and a standard OCaml syntax extension for monads), we can re-write

our example as follows:

let%bind cur = cs3110b_new path in
let%bind rep1,md1 = load cur in
let%bind rep2,md2 = load rep1.hws in
...

Now costs are encapsulated within the monad, and the aggregate value will be returned

when we run the computation.

We can also use CursorM to encapsulate other kinds of state. For example, when

using the store function incrementally, it is convenient to automatically aggregate the

operations that will ultimately be executed on the file system rather than asking the

programmer to keep track of them by hand.

Dependencies. Another issue that arises in iForest concerns dependencies. To illustrate,

suppose that we revise our running example so that both studentList and hws are

delayed:

cs3110c = directory {
studentList is <"students" :: (pads studentsFile)>;
hws is <[name :: hw(studentList) | name <- matches RE "hw[0-9]+"]>}

As written, this program will not compile, because studentList is a cursor, not a

studentsFile, which is the type expected by the hw specification. To fix this error, the

programmer would have to escape to our host language, explicitly load the cursor and

51



pass the result to hw. However, we think that this approach would be unacceptable:

programmers should never have to modify a specification to accomodate delays (modulo

the addition or deletion of delays). Besides being intuitive for programmers, this principle

underpins our skin language (see Section 3.5). Hence, we designed iForest so that loading

any cursor c automatically loads any other cursors upon which c depends. This design

decision has a few interesting consequences:

• Any expressions occuring in a specification are written against a fully-forced speci-

fication.

• It is possible to insert useless delay annotations:

cs3110d = directory {
studentList is <"students" :: (pads studentsFile)>;
hws is [name :: hw(studentList) | name <- matches RE "hw[0-9]+"]}

Here, the delayed studentList is immediately forced whenever the specification

is loaded. The iForest compiler accepts this specification, but emits a warning to

the programmer. For simplicity, we will assume that specifications do not contain

useless delays in the rest of this chapter.

• Because cursors do not currently cache data in our design, dependencies may be

loaded multiple times.

Another issue related to dependencies concerns the store function. In general, the

programmer may invoke store with arguments that do not satisfy the specification’s

dependencies. iForest currently does not check dependencies in the store function

instead requiring the programmer to check them using the load function.

3.4 Cost Model

Incremental Forest is designed to enable programmers to make precise tradeoffs between

simplicity and performance in applications that store persistent data using the file system.
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s CJsK p

File cfile(v) where v = LFileM p

Link clink(v) where v = LLinkM p

Dir cdir(v) where v = LDirM p

e :: s CJsK (p/JeKe)

⟨x :s1, s2⟩ CJs1K p · CJs2[x 7→ v ]K p where v = Ls1M p

[s | x ∈ e] CJs [x 7→ v1]K p · . . . · CJs [x 7→ vk]K p
where [v1, . . . , vk] = JeKe

s?

0 if None = Ls?M p

CJsK p otherwise
P(e) 0

Delay(s) 0

Figure 3.2: Incremental Forest cost model

To facilitate reasoning about costs, we developed a formal model of the costs associated

with using a given specification. In general, there may be a variety of costs that affect

performance including the total amount of memory used, the total amount of time

needed to load data into memory, the number of file system paths accessed during

loading, and so on. We designed the cost model to be general—it is able to handle all of

these examples, and many more.

Formal Definition. The cost model is parametrized on a partially ordered monoid

C = ⟨C, ·,0,⊑⟩, and a family of cost functions cτ one for each primitive τ (i.e., files, links,

and directories). We let p range over file system paths and let / denote the concatenation

operator on paths. We write v = LsM p if loading with s at p yields v . Similarly, we write

v = JeKe if evaluating e yields v . We write s [x 7→ v ] for the substitution of v for x in s.

Figure 3.2 presents the formal definition of the cost model. The cost CJsK for each

specification s is defined with respect to a path p. The cost for a file, link, or directory
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specification (File, Link , or Dir) is obtained by applying the corresponding primitive

cost function to the representation produced by the load function. The cost for a path

specification (e :: s) is simply the cost for s after updating p according to e. The cost

for a pair is obtained by combining the costs for both specifications using the monoid

operation (·). However, additional care is needed to handle data dependencies: We load

the representation of s1 to v and substitute it in for x in s2. The cost for a comprehension

is obtained by combining the costs for s with vn substituted for x , for each n from 1 to k.

The cost for an option specification (s?) is 0 if the file system does not have a node at p

and the cost for s otherwise. There is no cost for a predicate specification (P(e)) since e

is pure. Nor is there a cost for a delayed specification Delay(s) since nothing is loaded

once we get to the delay.

Properties. Given a few natural constraints, we can prove a monotonicity property for

the cost model: if more delay annotations are added to a given specification, then cost

monotonically decreases. Intuitively, this result holds because the iForest run-time will

access fewer file system nodes. Writing s ≺ s ′ to indicate that the delays in s are a subset

of those in s ′, we have the following theorem:

Theorem 3.4.1 (Delay Monotonicity). Let C = ⟨C, ·,0,⊑⟩ be a partially ordered monoid,

and let s and s ′ be specifications. If s ≺ s ′ and ∀x, y, z ∈ C. x · z ⊑ x · y · z, then:

CJs ′K p ⊑ CJsK p

The reason for the requirement (x · z ⊑ x · y · z) is that any sub-specification may be

delayed in a nested pair specification. It is important that cost does not increase just

because such a delayed specification happens to lie in the middle of a group of operations.

There are stronger formulations that may seem more intuitive. For example, this property

can be derived if operator · is commutative and x ⊑ x · y. We prefer to impose this

slightly less natural, but weaker requirement.
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Examples. Incremental Forest’s cost model can handle a wide variety of examples,

including each of the following:

• C = (N, 0,+), ⊑ is ≤ on the natural numbers and cτ returns the file size for links

and files and 0 for directories. The total cost of a specification will be the sum of

the sizes of all files loaded.

• C = (R+, 0,+), ⊑ is ≤ on the real numbers and cτ returns the amount of time it

took to load the file or link and 0 for directories (since loading all of its components

will already be taken into account). The total cost of a specification will be the sum

of the load times of every file.

• C = (N, 0,+), ⊑ is ≤ on the natural numbers and cfile(_) = 1 and clink(_) =

cdir(_) = 0. The total cost of a specification will be the number of files (not

including links) loaded.

• C = (M,∅,∪) where M is a multiset of files, ⊑ is the subset relation on multisets

and cτ returns the name of the file, link, or directory. The total cost of a specification

will be the multiset containing the names of everything loaded.

All of these examples have the monotonicity property of Theorem 3.4.1. As discussed in

Section 3.3, given a cost model, the cursor monad aggregates these costs automatically.

Our current implementation provides a library that includes each of the four examples

shown above.

3.5 Skins

The iForest delay construct allows programmers to control the costs associated with

loading and storing file system data. However, a significant practical problem remains.

Many iForest specifications are used by more than one application (or by more than

one component of the same application), and these different clients can require loading
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different portions of the filestore. Depending upon the details of the application, different

delays may be appropriate.

Using the features we have introduced so far, iForest programmers have three

options, all of which are unattractive:

1. They could only delay the parts of the specification that are not used by any

application, foregoing many of the benefits of iForest.

2. They could delay every node, cluttering the application with a lot of extra code to

force explicit loading.

3. They could copy the iForest specification and customize the delays for each applica-

tion, duplicating code and creating a maintenance nightmare.

iForest skins provide a better, more principled way to address these problems.

Our design for skins starts from the observation that many specifications have

the same underlying structure and differ only in where delays occur. A skin describes

the desired pattern of delays needed for a particular application. The programmer

can apply a skin to a specification to obtain a new specification that has the same

structure, but different delays. Most skins make assumptions about the structure of the

specifications to which they can be applied. Consequently, we define a type system for

iForest specifications and skins to check their compatibility. The type system is based on

fairly standard constructs for tree-structured data; the details are given in Appendix A.3.

Figure 3.3 defines the syntax of the skin language and gives types for the most

important operations on skins. The delay skin (⟨ ⟩) adds a delay at the top of the

specification, the un-delay skin (⟩ ⟨) removes a delay, and the invert skin (∼) toggles

a delay. The identity skin (_) does nothing. The option (h?), pair ({h1, h2}), and

comprehension ([h]) skins modify their sub-specifications. The predicate skin (h|Φ)

applies h only if Φ is satisfied. The union skin (h1 + h2) applies h1 if possible and
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h ::= ⟨ ⟩
| ⟩ ⟨
| ∼
| _
| h?
| {h1, h2}
| [h]
| h|Φ
| h1 + h2
| h1; h2
| map(h)

s ∈ Specification
h ∈ Skin
e ∈ Exp
Φ ∈ (DTree → B)

J·Kh : Skin → DTree ⇀ DTree
dtreeof : Specification → DTree
apply : Specification → DTree ⇀ Specification

Figure 3.3: Skin language syntax

otherwise applies h2. The composite skin (h1; h2) applies h1 and h2 in sequence. The map

skin (map(h)) applies h to each sub-specification.

To a first approximation, a skin can be thought of as denoting a transformation that

never modifies the underlying structure of the tree. We can enforce this property using

the notion of a delay tree, which captures the paths in the specification where delays

occur. Formally, a skin denotes a (partial) function on delay trees (J·Kh). We can extract a

delay tree from a specification (dtreeof ), and we can apply a delay tree to a specification

to obtain a new specification (apply).

Examples. To illustrate the use of skins, consider the Forest specification for the running

example that we have been using throughout this chapter:

cs3110 = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: hw(studentList) | name <- matches RE "hw[0-9]+"]}

In earlier sections, we explored how adding delays in four different configurations would

affect this specification. Now we look at how users could have generated these variants

by using skins instead of copying and pasting:

cs3110aSkin = {_,[<>]}
cs3110bSkin = hws(<>)
cs3110cSkin = {<>,<>}
cs3110dSkin = {∼,_}
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To get the four variations defined previously, we can apply these skins to the base

specification as follows:

cs3110a = cs3110 @ cs3110aSkin
cs3110b = cs3110 @ cs3110bSkin
cs3110c = cs3110 @ cs3110cSkin
cs3110d = cs3110 @ cs3110dSkin

Skin cs3110aSkin modifies cs3110 by first applying the identity skin (_) to the first part

of the directory, then applying the delay skin (⟨ ⟩) inside the comprehension of the second

part of the specification, generating:

cs3110a = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: <hw(studentList)> | name <- matches RE "hw[0-9]+"]}

There is no distinction between delaying the whole path construct and just its sub-

specification—i.e. <name :: hw(studentList)> and name :: <hw(studentList)> are equiv-

alent. The cs3110bSkin modifies cs3110 by matching on hws and then applying the

delay skin. This matching operation can be done on any named field in a directory and

de-sugars into a nested skin pair. The result is:

cs3110b = directory {
studentList is "students" :: (pads studentsFile);
hws is <[name :: hw(studentList) | name <- matches RE "hw[0-9]+"]>}

Skin cs3110cSkin simply delays both parts of the directory:

cs3110c = directory {
studentList is <"students" :: (pads studentsFile)>;
hws is <[name :: hw(studentList) | name <- matches RE "hw[0-9]+"]>}

Skin cs3110dSkin flips the delay annotation on the first part of the directory (i.e. the

studentList), which becomes delayed since it was not previously, and we end up with:

cs3110d = directory {
studentList is <"students" :: (pads studentsFile)>;
hws is [name :: hw(studentList) | name <- matches RE "hw[0-9]+"]}

Finally, consider a simpler version of our hw, that does not use PADS, with two delay

annotations:
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hw1 = directory {
max is "max" :: <file>;
students is [student :: <file>

| student <- matches RE "[a-z]+[0-9]+"]}

There is a useful skin idiom that we can use to achieve this result. The idiom delays

everything with a particular type, usually given as a constant. In this instance, the skin

would look as follows:

delayFiles = <>|file + map(delayFiles)

This skin uses the predicate form (h|Φ), which allows users to selectively apply a

skin only if the underlying specification satisfies a predicate Φ. In this case, we use

the built-in predicate file, which tests whether the type of the specification is a file.

Appendix A.3 shows the collection of built-in predicates. The delayFiles skin also uses

the union operator: If the description it is applied to is a file, then it simply delays

it. Otherwise, it uses the map construct to walk down one layer of structure (whether

option, comprehension, or directory) and applies its argument there. More formally,

map(h) de-sugars into [h] + h? + {h, h} + _. The delayFiles skin maps itself, which

means that it will apply itself to every sub-specification (or do nothing if it is at a leaf

node). We can apply delayFiles to a simplified hw to get hw1.

Both the delayAll skin (shown in Section 3.2) and the delayFiles skin are good

examples of skin idioms that are useful in many different applications and illustrate the

expressivity of the skin language.

Types. We designed a standard type system for tree-structured data to check compati-

bility between skins and specifications (or more specifically the delay trees derived from

specifications). As a side benefit, the type system gives us a convenient set of predicates

for applying delays based on the types of the nodes in the delay tree. The Φ in h|Φ is

often given by a type in practice.
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Since delays are annotations, they do not change the type of delay trees: types are

constant with respect to skin application. This property greatly simplifies the semantics

of the language and reasoning about how skins will affect a specification. For example,

composing skins reduces to applying them in order. Moreover, skins that have the same

type can be composed in either order, without failing. Similarly, deciding which branch

of a union to apply can be determined from the type of the specification.

Properties. We have proven a variety of useful properties about skins, types, and their

relationships. Many of these properties follow by construction. Appendix A.4 gives these

as theorems and lemmas, including the soundness and completeness of the type system,

closure under composition for skin application, and various algebraic properties. We

have proven these properties using the formal core language specified in Appendix A.3.

3.6 Experience

We built prototype implementations of iForest and skins, as well as a version of PADS [8],

as embedded languages in OCaml. Informally, PADS is to single files what Forest is to

filestores. Our implementation is approximately 4600 lines of OCaml extension points

(or PPX syntax extensions) and OCaml code. We developed an iForest specification for

SWAT [39] (Figure 3.6), and we built several applications in collaboration with the

Cornell Soil and Water Lab, which is led by Todd Walter. We conducted experiments

showing that skins can speed up load times by approximately 7x.

SWAT Overview. The Soil and Water Assessment Tool (SWAT) [39] is a watershed-

scale, quasi-spatially distributed, hydrologic model that is used to quantify the impact of

land management practices. One use of SWAT is to simulate the effects on local rivers

and streams of changing the crops and fertilizers used on farms, or changing landuse,
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Figure 3.4: The Fall Creek watershed
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Figure 3.5: SWAT filestore dependencies

for example by replacing a forest with a housing development. In an instantance of

SWAT, the area of interest is split into a number of non-overlapping, but contiguous

subbasins, which are further broken down into Hydrologic Response Units (HRUs). HRUs

are also non-overlapping, but usually not contiguous. However, the entirety of an HRU

is identical with respect to its land use, soil types, and slope classifications even if the

areas represented within are potentially far apart. Note that an HRU cannot be spread

over multiple subbasins. In our examples, we used a SWAT instance from the Fall Creek

watershed in Ithaca, NY, pictured in Figure 3.4.
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SWAT Filestore. Like many similar tools, SWAT stores its persistent data using a

structured filestore. A top-level directory TxtInOut contains a master index file file.cio

that refers to a large number of data files (around 10,000 in our example), identified

by specific names and extensions. The data files contain a variety of information about

the watershed including general features, such as snowfall temperature, soil evaporation

factor, and surface runoff time, as well as features specific to each sector of land in the

model, such as the type of crop, fertilizer, and irrigation. Figure 3.5 depicts the various

components in a SWAT filestore and the dependencies between them. Note that the

names of certain nodes (*.hru) are parametrized to indicate that they are instantiated

multiple times, one for every sector of land in the model. A typical SWAT filestore has

thousands of files with tens of megabytes of data or more, depending on the level of

detail in the model.

Example Application: Calibration. An important first step in any SWAT application

is to calibrate the model to ensure that it accurately reflects watershed features. To do

this, a scientist explores the parameter space, adjusting values within specified bounds to

optimize a global objective such as Nash–Sutcliffe efficiency [33]. Concretely, calibration

entails modifying input parameters stored in ASCII text files, (re)running the SWAT

executable to compute derived data, and then comparing the output values, which are

also stored in ASCII text files. This process is iterated many times until the optimal set of

parameters, or a close approximation, is found.

Example Application: Management. After calibrating, many applications can be built

using SWAT. One common use is quantifying the impact of various land management

decisions on a watershed [13, 16, 20, 34, 42]. This involves encoding management

decisions as inputs to the model and then interpreting model output. Operationally, this

application is similar to calibration in that the scientist modifies input parameters stored
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swatIn = directory {
cio is "file.cio" :: cioFile;
fig is $cio.figFile.str$ :: figFile;
cst is $cstFile cio$ :: file option;
wnd is $slrFile cio$ :: wnd option;
rh is $rhFile cio$ :: rh option;
slr is $slrFile cio$ :: slr option;
bsn is $basinFile cio$ :: bsn;
plant is $plantFile cio$ :: crop;
till is $tillFile cio$ :: till;
pest is $pestFile cio$ :: pest;
fert is $fertFile cio$ :: fert;
urban is $urbanFile cio$ :: urban;
pcps is [ f :: pcp | f <- $pcpFiles cio$ ];
tmps is [ f :: tmp | f <- $tmpFiles cio$ ];
subs is [ f :: sub | f <- $subFiles fig$ ];
rtes is [ f :: rte | f <- $rteFiles fig$ ];
swqs is [ f :: swq | f <- $swqFiles fig$ ];
hrus is [ f :: hru | f <- $allHruFiles subs$ ];
mgts is [ f :: mgt | f <- $allMgtFiles subs$ ];
sols is [ f :: sol | f <- $allSolFiles subs$ ];
chms is [ f :: chm | f <- $allChmFiles subs$ ];
gws is [ f :: gw | f <- $allGwFiles subs$ ];
seps is [ f :: sep | f <- $allSepFiles subs$ ];
wgns is [ f :: wgn | f <- $allWgnFiles subs$ ];
pnds is [ f :: pnd | f <- $allPndFiles subs$ ];
wuss is [ f :: wus | f <- $allWusFiles subs$ ] }

Figure 3.6: SWAT filestore specification. The constants in the specification that are not
File are PADS specifications describing the contents of the individual files.

in ASCII text files, runs SWAT, and then looks at the output values in more ASCII text

files.

Forest SWAT Specification. Forest facilitates implementing these kinds of SWAT ap-

plications. Figure 3.6 gives a Forest specification for SWAT filestores. The top-most

specification is a directory that matches the top-level TxtInOut directory. The first entry

is for file.cio, which serves as the master index for the filestore. The rest of the entries

use options and comprehensions to describe the structure of the remaining files. Note

that dependencies can be expressed by simply referring to values—e.g., the list of PCP
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files pcps depends on the values in the representation of file.cio.

Incremental Forest SWAT Specifications. SWAT is a large model with a host of inputs

and outputs, but a given application often needs to inspect only a small set of files. The

relevant files vary from application to application, however. Using skins, scientists can

restrict their attention to the portion of the data in which they are interested, while

sharing a single iForest description across many different applications.

Results in Brief. Writing an initial specification can be time consuming because of

the myriad details (see the SWAT manual [38]), once we had the specification, writing

applications against it was generally straightforward. We found the skin language

expressive enough to describe in a few lines everything we needed. Designing a skin

typically required only a few minutes. We found reasoning about skins to be mostly

straightforward.

We ran experiments on data from the Fall Creek watershed in Ithaca, NY on a cluster

of 24 Dell r620 servers, each with two eight-core 2.60 GHz Xeon CPU E5-2650 processors

and 64GB of RAM running Ubuntu 14.04.1 LTS. We report all times in seconds unless

otherwise indicated. We found that iForest yields speed-ups of approximately 7x for

loads.

3.6.1 Microbenchmark

To get a sense of the performance improvements possible with skins, we ran a mi-

crobenchmark that quantified the time to load data from a SWAT directory using several

different skins (Figure 3.7). We used the specifications in Figure 3.8 with 5 different

levels of skins to load the input and output files of a 95MB SWAT directory containing

9771 files:
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• IP+OP, which used the swatIP and swatOP specifications to load only the depen-

dencies required for the rest of the skins. IP and OP stand for Input/Output with

Predicates.

• ILU+OLU, which used the swatILU and swatOLU specifications to load exactly what

is used in the land management application. ILU and OLU stand for Input/Output

with LandUse.

• ILU, which used the swatILU and swatOut specifications; The swatOut specification

is entirely undelayed and specifies the seven output files of a SWAT execution.

• OLU, which loaded the swatIn and swatOLU specifications respectively. The swatIn

specification is entirely undelayed.

• NoSkin, which loaded the swatIn and swatOut specifications.

Figure 3.7 shows the results of the experiment, reporting the average and standard

deviation of the various loading times in seconds. The ILU+OLU skinned version is

roughly 7 times faster than the NoSkin unskinned version on average. The error bars

show standard deviations in all charts.

3.6.2 Calibration

Next, we built an application that automatically calibrates a SWAT model with respect

to a set of parameters. As discussed above, this is a critical first step in any SWAT

application. The calibration used by our colleagues attempts to match the daily outflow

of water shown in the model with the ground truth data, measured by a US Geologic

Survey gauging station. Accuracy is measured using the Nash-Sutcliffe Model Efficiency

(NSE) Coefficient [33],

E = 1− ΣT
t=1(Q

t
o −Qt

m)
2

ΣT
t=1(Q

t
o − Q̄o)2
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Field IP+OP ILU+OLU ILU OLU NoSkin

Avg 0.15 20.92 21.65 144.28 145.01

Stdev 0.005 5.07 5.07 27.03 27.03

Figure 3.7: Load times for SWAT input-output directories

where Qt
o is observed discharge, Qt

m is measured discharge, Q̄o is the mean of observed

discharges, t denotes time, and E ranges from 1 to −∞. If E = 1, the model perfectly

predicts the observations (which is extremely unlikely to arise in practice). If E < 0,

then we would have done better by predicting the average of the observed data at every

point. Generally, E > 0.5 is considered satisfactory [32].

Figure 3.9 lists a set of parameters that are relevant for calibrating the Fall Creek

watershed, showing that the search space is extremely large. In our application, we

only modified 4 parameters, chosen because they are especially sensitive: ALPHA_BF,

GW_DELAY, SURLAG, and ESCO. We picked 6 points per parameter, distributed relatively

evenly over the search space, and ran calibration. Specifically, we wrote all combinations
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(* skins *)
delayAll = <>;map(delayAll)

predSkin = delayAll;fig(><);subs(><;[><]);
cio(><)

inCalib = predSkin;bsn(><);gws(><;[><]);
hrus(><;[><])

outCalib = delayAll;outRch(><)

inLU = predSkin;mgts(><;[><])
outLU = delayAll;outStd(><)

(* specifications *)
swatICB = swatIn @ inCalib
swatOCB = swatOut @ outCalib

swatILU = swatIn @ inLU
swatOLU = swatOut @ outLU

swatIP = swatIn @ predSkin
swatOP = swatOut @ delayAll

Figure 3.8: SWAT Skins and the resulting iForest specifications. The swatIn specification
appears in Figure 3.6; swatOut is not shown.

Parameter Min Max Init Best
GW_DELAY 0.50 1000.00 31.000 82.410
ALPHA_BF 0.10 1.00 0.0480 0.152
GWQMN 0.00 500.00 0.0000 29.154
GW_REVAP 0.00 0.20 0.0200 0.192
REVAPMN 0.00 500.00 1.0000 443.955
RCHRG_DP 0.00 1.00 0.0500 0.107
SFTMP -5.00 5.00 1.000 -0.424
SMTMP -5.00 5.00 0.500 3.286
SMFMX -5.00 5.00 4.500 1.843
SMFMN -5.00 5.00 4.500 3.611
TIMP 0.00 4.00 1.000 0.553
SURLAG 0.00 15.00 4.000 0.246
ESCO 0.10 1.00 0.950 0.583
EPCO 0.00 1.00 1.000 0.955
NSE -∞ 1.00 -1.034 0.621

Figure 3.9: Calibration parameters
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to the input files, running SWAT with each combination, and recorded the best values.

With this approach, we achieved an NSE of 0.41. It is worth noting that when

we combined the best values for our four parameters with the best values for all other

parameters previously found by hydrologists and reran SWAT, we got an NSE of 0.625.

This value is slightly better than the value of 0.621 that our colleagues had previously

obtained.

Figure 3.10 gives the running time of our calibration application. The majority of the

time comes from running SWAT, which takes circa 2.5 minutes per run. This executable

is a black box so we can do nothing to improve it. We see smaller improvements than

the speedup measured earlier, even in Non-SWAT time, presumably because the program

is no longer just loading. Even so, the skinned version is notably faster.

3.6.3 Land Management

Another common use of SWAT is to simulate the impact of various land management

decisions, such as which crops to plant and when, which water sources to irrigate from

and how much, or what fertilizers to use and when, etc. [13, 16, 20, 34, 42]. This is done

by modifying management input files describing which decisions should be simulated in

the model. There is one such file for each HRU in a SWAT directory.

To show that iForest can handle such situations, we built an application that system-

atically changes some management input files, runs SWAT, and then looks at selected

output parameters to observe the results. Specifically, we changed the fertilizer to Fresh

Dairy Manure, ran SWAT, and then looked at how the amount of Organic Nitrogen in the

water varies with the amount of fertilizer. This approach is sufficiently generic that only

small changes would be required to switch what parameters to change, how to change

them, where to change them, and what output value to track.

Figures 3.11 and 3.12 show our results. The first figure reports timing information,
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Unskinned Total Time Non-SWAT time SWAT time

Average 1054.89 171.29 883.60

Stdev 16.16 12.72 8.19

Skinned

Average 943.17 68.94 874.23

Stdev 6.02 2.65 5.36

Figure 3.10: Calibration experiment

showing that we obtained a 5.5x speedup in non-SWAT time. The second depicts how

organic nitrogen in the stream increases as we use more Fresh Dairy Manure. The curve

is not smooth because the HRUs behave differently.

3.7 Conclusion

This chapter presented Incremental Forest, a domain-specific language that extends

Forest [7] with a new delay construct to enable processing file system data incrementally.
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Unskinned Total Time Non-SWAT time SWAT time

Average 1766.13 138.48 1627.64

Stdev 24.26 23.20 6.55

Skinned

Average 1668.72 25.25 1643.47

Stdev 11.38 6.07 8.59

Figure 3.11: Land management experiment

We described the delay construct as well as a cursor type for encoding it. We introduced

a generic cost model and showed that costs monotonically decrease as delays are

added, subject to natural conditions. We described a language of skins, which allows

programmers to induce different delay annotations in specifications without rewriting

them. We presented a type system to ensure that skins are only applied to compatible

specifications, and we proved the type system sound and complete. Finally, we described

case studies based on the Soil and Water Assessment Tool (SWAT), which hydrologists

use to study watersheds. Specifically, we discussed a calibration application and a
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Figure 3.12: Increase in organic nitrogen as more HRUs use Fresh Dairy Manure fertilizer

management application that we have written using the iForest SWAT specification. We

also reported performance results on a microbenchmark showing a speedup of 7x when

loading with a skin versus loading naïvely.

Unfortunately, although Incremental Forest deals with the issue of large filestores, it

has little support for concurrency. The next chapter will be a brief primer on concurrency

and zippers in preparation for Transactional Forest (Chapter 5), a system that we

designed to tackle precisely the concurrency problem.
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Chapter 4

On Concurrency and Zippers:

A Brief Interlude

In this chapter, we explore concurrency issues that may appear in our file systems, and

we discuss zippers. That sets the scene for the next two chapters.

4.1 Concurrency

Concurrency is ubiquitous in file systems and arises from two separate sources: (1)

Multiple concurrent users of the file system (e.g. in a networked file system); and (2)

parallel processes from single users. Unfortunately, concurrency increases the difficulty

of writing correct code. As programmers, we want to think of our applications as running

in isolation, making the relevant state of our system predictable during the execution

of our programs. A concurrent system may instead change behind our back, breaking

this invariant, and complicating reasoning about our code. This section will introduce

several common concurrency-related problems and common high-level approaches for

tackling them.

Concurrency errors can arise when two transactions t1 and t2 that access or modify

the same data are run at the same time. The errors stem from unfortunate interleavings
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of these operations, because transactions are not isolated from each other. The data that

multiple transactions have access to is called the shared state of these transactions. At

first approximation, there are three access/modification patterns that lead to difficulties

called conflicts between transactions:

1. Non-Repeatable Reads arise when t1 reads the data and t2 modifies it before

t1 reads it again. From t1’s view, it should be reading the same data in both

circumstances, but instead the data has changed. This is also called a Read-Write

conflict.

2. Dirty Reads arise when t1 writes data and t2 reads it before t1 writes it again. Then,

t2 sees intermediate data that t1 never intended to be seen and that would never be

seen if the transactions were run sequentially. For example, in the case of filestores,

t2 can see an inconsistent state which violates our invariants. This is also called a

Write-Read conflict.

3. Dirty Writes arise when there are at least two pieces of data, A and B. If t1 writes A,

then t2 writes both, then t1 writes B, we end up with t1’s B and t2’s A. This may be

an inconsistent state, which, again, may violate our invariants. This is also called a

Write-Write conflict.

All of these issues arise because transactions are not isolated from each other—

each transaction can observe the effects of partial execution by others. This causes our

transactions to violate the principles of atomicity and consistency. Atomicity requires

that the effects of a transaction either happen all-at-once or not-at-all: the effects of

the transaction are indivisible. Consistency requires that a transaction that starts in a

consistent state should also finish in a consistent state. As we’ve seen above, neither of

these properties hold due to the conflicts arising from a lack of isolation.

There are traditionally four guarantees that we desire in a concurrent system, which

are expressed with the acronym ACID [21]. These are Atomicity, Consistency, Isolation,
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and Durability. The first two were described above. Isolation guarantees that transactions

cannot interfere with one another, while durability ensures that the effects of transactions

persist through crashes. Atomicity and durability together ensure that either no effect or

the full effect of a transaction persists through a crash.

The overhead of maintaining ACID increases the longer a transaction runs. Si-

multaneously, many parts of a program do not touch any of the shared state between

transactions, and thus can be safely ignored for the purposes of maintaining ACID.

Therefore, rather than considering a full program as a transaction, it behooves us to split

programs into multiple pieces, some of which are transactions and some of which are not.

This split allows other concurrent operations to be executed between the transactions,

reducing the overhead while maintaining ACID it is needed. A transaction’s full effect

should be durably represented on the file system when it is committed. Alternatively, a

transaction can also be aborted, in which case none of its effects should persist.

Concurrency Control Schemes are strategies for enforcing ACID guarantees in concur-

rent systems. There are two main approaches to concurrency control: pessimistic and

optimistic.

Pessimistic concurrency control embodies the view that transactions are likely to

conflict, so we should limit them a priori to avoid those conflicts. Usually, this is achieved

by requiring that transactions lock shared resources before using them, ensuring that

other transactions cannot concurrently access the shared resource. Sloppy designs or

implementations of pessimistic strategies can result in deadlocks. Deadlocks occur when

two (or more) transactions are waiting for resources that the other transaction has

already locked, so neither can make progress. The use of locks limits the concurrency

that a system can exploit, since multiple transactions cannot access the same data—even

if they would not conflict in the end. On the other hand, it can be easier to determine

whether our desired ACID guarantees hold with pessimistic concurrency control, since
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transactions cannot run concurrently if they access the same resource. Two-phase

locking [18] (2PL) is a common pessimistic concurrency control strategy.

Optimistic concurrency control emboides the opposite philosophical position: we

presume that most transactions will not conflict, so we should not limit their execution,

but instead check for conflicts before committing a transaction’s results. This semantics

is often achieved by logging the effects of each transaction locally, then checking for a

conflict with any committed transaction by comparing their local log to a global log. If

there is no conflict, then the local log is integrated into the global log, and the transaction

is committed. If there was a conflict, then the transaction is aborted (and often restarted).

If there are no conflicts and the overhead of logging and log-checking is low, then this

approach can be very efficient. On the other hand, if there are many conflicts and

transactions have to be restarted frequently, there will be much duplicate work. Commit

Ordering (CO) is a common optimistic concurrency control strategy.

The key property that we will enforce between transactions in this dissertation is

called serializability. It ensures that the result of any concurrent set of transactions will

be the same as though they had run in sequential order. Regardless of whether the trans-

actions are actually atomic or isolated, serializability ensures that, at the system level,

they behave as though they were. Additionally, if each transaction maintains consistency

and durability, a serializable system will do the same. Variants of serializability are the

strongest guarantees in common use in database systems.

In the next chapter, we use an optimistic concurrency scheme to achieve serializ-

ability among Forest transactions, mitigating concurrency issues in filestores. We use

a similar scheme to construct a transactional file system with provable guarantees in

Chapter 6. Both chapters also use the zipper data structure from functional programming,

which we introduce in the next section.
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4.2 Zippers

Zippers are a functional representation of in-progress traversals of data structures. Zip-

pers are derivable from the structures that they represent. This section discusses why

tree zippers are a good fit for representing filestores. We also present the tree zipper

instantiation that we use throughout the dissertation.

The concept of zippers was first published by Huet [23]. Huet identifies, what we

would now call, a tree zipper, suggesting that it must have been reinvented on numerous

occasions due to the simplicity and elegance of the idea. In essence, the zipper has two

components; the current subtree of focus and the path taken from the root of the full

tree to reach that subtree. The key goal is to enable tree updates without relying on

destructive mutation or requiring logarithmic complexity for each update.

The zipper achieves this by supplying a set of local (constant time) operations for

moving through the tree and updating the focus node. For example, we might go_down

from the root node to its first child, making that the focus node, then go_right to its

sibling (i.e. the second child of the root). We could change the new focus node to be a

leaf, effectively deleting that subtree, then go_up to return to the root. Notably, if we

design the two components (the focus and the path) correctly, then each of the traversal

operations (i.e. those starting with go) is just a small reshuffling of the zipper. The

change operation simply swaps out the current focus node with a new one. Finally, while

any changes would not persist in the original tree, since it is a functional structure, we

can quite easily use the go_up operation to properly propagate any changes that we have

made. This means that we can recover the modified tree by moving back to the root and

extracting the focus node.

Since then, the concept of zippers has been generalized to other structures, capturing

their in-progress traversals in a functional data structure. In work that I find particularly
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compelling, McBride showed a correspondence akin to the standard calculus derivative

between zippers and the structures that they capture [31].

However, for the rest of this dissertation, we will restrict attention to tree zippers,

since they are well-suited to representing file systems. In particular, the notion of a

working path is neatly encompassed by the zipper. The focus node captures the fact that

the commands are executed relative to this working path, and the path component of

the zipper, much like the literal working path, shows from whence we came.

In Chapters 5 and 6, we use zippers represented by this OCaml type:

type 'a zipper =
{ ancestor: 'a zipper option;

left: 'a list;
focus: 'a;
right: 'a list;

}

The particular instantiation of 'a varies by chapter, but the rest is the same. The

ancestor uses a nesting of zippers to represent the path from the root to the focus node.

If the root is the focus node, the ancestor will be None. The siblings to the left and right

of the focus node are captured by the lists left and right respectively. The left list is

stored in reverse, with its closest sibling as its first element. Finally, focus is the focus

node.

Due to the verbosity of defining each zipper using the syntax above, we instead use

a special notation:

Definition 4.2.1 (Zipper Notation). We define notation for constructing and deconstruct-

ing (i.e. pattern matching on) zippers. To construct a zipper we write:

left ↼ HfocusIz ⇀ right ≜ {ancestor = Some(z ); left; focus; right}

where any of ancestor, left, and right can be omitted to denote a zipper with

ancestor = None, left = [], and right = [] respectively. For example:

HfocusI ≜ {ancestor = None; left = []; focus; right = []}
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Likewise, to destruct a zipper we write:

left ↼ LfocusMz ⇀ right

where any part can be omitted to ignore that portion of the zipper, but any included part

must exist. For example, z = L_Mz
′
:⇐⇒ z .ancestor = Some(z ′).

Finally, to construct a new zipper from an existing zipper and a focus node, we define:

z with f ≜ {z with focus = f}

This covers the majority of the specialized knowledge required to understand the

next two chapters. In the next chapter, we look at Transactional Forest, a domain-specific

language and system that we designed for processing concurrent filestores.
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Chapter 5

Transactional Forest:

A DSL for Managing Concurrent Filestores

This chapter is based on joint work with Katie Mancini, Kathleen Fisher, and

Nate Foster published in ASPLAS ’19 [3].

Brief Summary

Many systems use ad hoc collections of files and directories to store persistent data.

For consumers of this data, the process of properly parsing, using, and updating these

filestores using conventional APIs is cumbersome and error-prone. Making matters

worse, most filestores are too big to fit in memory, so applications must process the

data incrementally while managing concurrent accesses by multiple users. This chapter

presents Transactional Forest (TxForest), which builds on earlier work on Forest and

iForest to provide a simpler, more powerful API for managing filestores, including a

mechanism for managing concurrent accesses using serializable transactions. TxForest

implements an optimistic concurrency control scheme using Huet’s zippers to track the

data associated with filestores. We formalize TxForest in a core calculus, develop a proof

of serializability, and describe our OCaml prototype.
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5.1 Introduction

In many applications, multiple users must read and write the data stored on the file

system concurrently. Even in settings where there is only a single user, parallelism can

often be used to improve performance. For example, many instructors in large computer

science courses rely on filestores to manage student data, encoding assignments, rosters,

and grades as ad hoc collections of directories, CSVs, and ASCII files respectively. During

grading, instructors use various scripts to manipulate the data—computing statistics,

normalizing raw scores, and uploading grades to the registrar. However, these scripts are

written against low-level file system APIs and rarely handle multiple concurrent users.

This can easily lead to incorrect results or even data corruption in courses that use large

numbers of TAs to help with grading.

The PADS and Forest family of languages, described in earlier chapters, offers a

promising approach for managing ad hoc data. In these languages, the programmer

specifies the structure of an ad hoc data format using a simple, declarative specification,

and the compiler generates an in-memory representation for the data, load and store

functions for mapping between in-memory and on-disk representations, as well as tools

for analyzing, transforming, and visualizing the data. PADS focuses on ad hoc data stored

in individual files [8], while Forest handles on ad hoc data in filestores—i.e., structured

collections of files, directories, and links [7]. Unfortunately, these languages lack support

for concurrency.

To address this challenge, this chapter proposes Transactional Forest (TxForest), a

declarative domain-specific language for correctly processing ad hoc data in the presence

of concurrency. Like its predecessors, TxForest uses a type-based abstraction to specify

the structure of the data and its invariants. From a TxForest description, the compiler

generates a typed representation of the data as well as a high-level programming interface
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that abstracts away direct interactions with the file system and provides operations for

automatically loading and storing data, while gracefully handling errors. TxForest also

offers serializable transactions to help implement concurrent applications.

The central abstraction that facilitates TxForest’s serializable semantics, as well as

several other desired properties, is based on Huet’s zippers [23]. Rather than representing

a filestore in terms of the root node and its children, a zipper encodes the current node,

the path traversed to get there, and the nodes encountered along the way. Importantly,

local changes to the current node as well as common navigation operations involving ad-

jacent nodes can be implemented in constant time. Additionally, by replacing the current

node with a new value and then ‘zipping’ the tree back up to the root, modifications can

be implemented in a purely functional way.

As others have also observed [27], zippers are a natural abstraction for filestores,

for several reasons: (1) the concept of the working path is cleanly captured by the

current node; (2) most operations are applied close to the current working path; (3)

the zipper naturally captures incrementality by loading data as it is encountered in the

zipper traversal; and (4) a traversal (along with annotations about possible modification)

provides all of the information necessary to provide rich semantics, such as copy-on-write,

as well as a simple optimistic concurrency control scheme that guarantees serializability.

In this chapter, we first formalize the syntax and semantics of TxForest assuming

a single thread of execution and establish various correctness properties, including

round-tripping laws in the style of lenses [12]. Next, we extend the semantics to

handle concurrent threads and introduce a transaction manager that implements a

standard optimistic concurrency control scheme. We prove that all transactions that

successfully commit are serializable with respect to one another. Finally, we present a

prototype implementation of TxForest as an embedded language in OCaml, illustrating

the feasibility of the design.
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CS3110

students
322

aaa17

. . .

zzz23

hw1 . . . hw5

max
100

aaa17
40

. . .
zzz23
85

Figure 5.1: Example: file system fragment used to store course data.

The contributions of this chapter are:

• We present Transactional Forest, a declarative domain-specific language for pro-

cessing ad hoc data in concurrent settings (Sections 5.3 and 5.4).

• We describe a prototype implementation of Transactional Forest as an embedded

domain-specific language in OCaml and Python (Section 5.5).

• We prove that our design satisfies several formal properties, including round-

tripping laws and serializability (Appendix B).

The next section motivates TxForest using the running example of the dissertation.

5.2 Example: Course Management System

This section motivates the design of TxForest using the simple running example intro-

duced in Chapter 2. Recall the filestore fragment shown in Figure 5.1. The top-level
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directory (CS3110) contains a file (students) and a set of sub-directories, one for each

homework assignment (hw1–hw5). The students file gives the total number of enrolled

students, followed by a list of their NetIDs (Cornell’s unique identifier for its students

and employees). Each homework directory has a file for each student that contains their

grade on the assignment (e.g., aaa17), as well as a special file (max) with the maximum

possible score.

In our running example, we implemented a function to add students to our filestore.

This requires the user to read and write the students file as well as to add a file to each

of the hw directories. As a reminder, here is the Forest specification shown in Section 2.3:

hw = directory {
max is "max" :: (pads pint);
students is [student :: (pads student)

| student <- matches RE "[a-z]+[0-9]+"]}

cs3110 = directory {
studentList is "students" :: (pads studentsFile);
hws is [name :: hw | name <- matches RE "hw[0-9]+"]}

The implementation of add_student from the same section is

let add_student ~student () =
let (rep,md) = cs3110_load baseDir in
Forest.exit_on_error md;
if List.mem rep.studentList.pstudents student ~equal:String.equal
then failwithf "add_student: Student %s already exists." student ()
else

add_student_to_filestore student (rep,md)
|> cs3110_manifest
|> Forest.exit_on_mani_error
|> store

and has several important benefits over the OCaml code (Section 2.1): (1) the structure

of the filestore is explicit in the specification and the code; (2) the use of types makes

certain programming mistakes impossible, such as attempting to read a file at a missing

path; and (3) any part of the filestore not conforming to the specification is automatically

detected.
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However, the Forest code does not support concurrency. Consider what happens if

multiple members of the course staff try to add students concurrently. If they all read

the students file before any write it, then we could easily be left with an inconsistent

filestore because several students are present in the homeworks but not correctly ’regis-

tered’ for the course. Other procedures, like renormalizations, produce more insidious

inconsistencies, which are very difficult to detect, diagnose, and fix.

Further, it is unnecessary (and often infeasible) to load the entire filestore into

memory—e.g., suppose we only need to manipulate data for a single homework or an

individual student. Chapter 3 dealt specifically with this problem; this chapter uses a

different method to achieve the same result.

Transactional Forest Implementation. TxForest offers the same advantages as Forest,

while dealing with issues related to concurrency and incrementality. The only added cost

is a small shift in programming style—i.e., navigating using a zipper.

The TxForest specification for our running example is identical to the Forest version.

However, this surface-level specification is then translated to a core language (Section 5.3)

that uses Huet’s zipper internally and also provides transactional ACID guarantees. The

TxForest code for the add_student function is different than the Forest version. Here is

one possible implementation:

let add_student ~student z : (zipper,string) Result.t =
let%bind l = get_student_names z in
if List.mem l student ~equal:String.equal
then mk_err "add_student: Student %s already exists." student
else add_student_to_filestore student z

Note that the type of the function has changed so that it takes a zipper as an

argument and returns a value in the result monad:

type ('a,'b) Result.t = Ok of 'a | Error of 'b

This result monad tracks the same sorts of errors seen in the Forest code—e.g. from

malformed filestores but not from concurrency issues. The let%bind operator is a
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shorthand for sequencing computation with the standard monadic bind operation. The

mk_err function also allows users to thread their own errors through the monad.

Beyond this difference, the code is simple and clear; add_student_to_filestore is

doing all of the work. As before, it is composed of two parts:

let add_student_to_filestore student z =
add_student_to_studFile student z
>>= add_student_to_every_hw student

The first part is rather uninteresting, but the second part utilizes several instructive

constructs:

let add_student_to_every_hw student z =
let%bind z = goto "hws" z in
let add_student_to_hw z =

down z >>= goto "students"
>>= add_and_goto student
>>= down >>= set_score Ungraded
>>= up >>= up >>= up >>= up

in
Derived.map ~f:add_student_to_hw z

The goto function traverses the zipper—e.g., goto "hws" z navigates to the directory

node named hws, which is a comprehension. The Derived.map function at the bottom is

a function derived from our core language (Section 5.3) that maps over a comprehension,

performing a function at each node. The add_student_to_hw function then goes to the

current homework and adds the student. First, it moves down the path specification

(name::hw) to the homework directory. Then, it uses the bind operator (»=) to thread the

resulting zipper through the monad, and goto the students portion of the homework. It

uses another derived function that adds the student to the comprehension and moves to

that node. Then it walks down the path to the file node and updates the score. Finally, it

moves up four times to get back to where it started, allowing map to correctly move to

the next node and repeat the process.

Users need some way to construct a zipper to use the add_student function. The

TxForest library provides functions called run_txn and loop_txn:
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type txError = TxError | OpError of string
val run_txn : spec -> path -> (zipper -> ('a,string) Result.t) ->

(unit -> ('a,txError) Result.t)
val loop_txn : spec -> path -> (zipper -> ('a,string) Result.t) ->

(unit -> ('a,string) Result.t)

which might be used as follows:

match run_txn cs3110_spec path (add_student ~student:"jd753") () with
| Error TxError -> printf "Transaction aborted due to conflict"
| Error(OpError err) -> printf "Transaction aborted with error: %s" err
| Ok _ -> printf "Student jd753 added successfully"

The run_txn function takes a specification, an initial path, and a function from

zippers to results and produces a thunk. When the thunk is forced, it constructs a zipper

focused on the given path and runs the function. If this execution results in an error,

then the outer computation produces an OpError. Otherwise, it attempts to commit the

modifications produced during the computation. If the commit succeeds, then it returns

the result of the function; otherwise it discards the results and returns a TxError. The

loop_txn function is similar, but retries the transaction until there is no conflict or the

input function produces an error.

TxForest guarantees that committed transactions are serializable—i.e., the final file

system will be equivalent to one produced by executing the committed transactions

in some serial order. See Section 5.4 for the formal concurrent semantics and the

serializability theorem. In our example, this means that no errors can occur due to

adding multiple students simultaneously. Furthermore, TxForest automatically provides

incrementality by only loading the data needed to traverse the zipper—an important

property in larger filestores. Incremental Forest (Chapter 3) provides a similar facility,

but requires explicit user annotations. Overall, TxForest provides incremental support

for filestore applications in the presence of concurrency. The next two sections present

the language in detail, develop an operational model, and establish its main formal

properties.
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5.3 Transactional Forest

This section presents TxForest in terms of a core calculus. We discuss the goals and high

level design decisions for the language before formalizing the syntax, semantics, and

several properties including round-tripping laws, equational identities, and consistency

relations. Finally, we give a taste of the core calculus by using it to encode functions that

would be useful for the course management example above. This section deals primarily

with the single-threaded semantics, while the next section presents a concurrent model.

The main goals of this language are to allow practical processing of filestores for

non-expert users. This leads to several requirements: (1) an intuitive way of specifying

filestores [7]; (2) automatic, incremental processing, since filestores are typically large;

(3) automatic concurrency control, as concurrency is both common and difficult to get

right; and (4) transparency, since filestore interaction can be expensive and should

therefore be explicit.

The zipper abstraction on which our language is based helps achieve our second

and fourth requirements. Both of these requirements and concurrency are then further

addressed by our locality-centered language design. The semantics of every command

and expression only considers the locale around the focus node of the zipper. This

means that every command can restrict its attention to a small part of the filestore which,

along with the fact that data can be loaded as-required while traversing the zipper, gives

incrementality. We believe that the combination of locality and explicit zipper traversal

commands also gives transparency. In particular, the footprint of any command is largely

predictable based on the filestore specification and current state. Predictability also

simplifies tasks such as logging reads and writes, which is useful for concurrency control.

89



Strings u ∈ Σ∗

Integers n ∈ Z
Variables x ∈ Var
Values v ∈ Val
Environments E ∈ Env : Var 7→ Val
Paths p ::= / | p/u
Contents C ::= Dir {u} | File u
File Systems fs : Path 7→ Content
Contexts ctxt : Env × Path × 2Path × Zipper

Figure 5.2: Preliminaries

5.3.1 Syntax

We model a file system as a map from paths to file system contents, which are either

directories (a set of their children’s names) or files (strings). For a path p and file system

fs , we define p ∈ fs ≜ p ∈ dom(fs). See Figure 5.2 for the metavariable conventions used

in our formalization. We assume that all file systems are well-formed—i.e., that they

encode a tree, where each node is either a directory or a file with no children. We use

Definition 2.3.1 from Chapter 2:

Definition 2.3.1 (Well-Formedness). A file system fs is well-formed if and only if:

1. fs(/) = Dir _ (where / is the root node), and

2. p/u ∈ fs ⇐⇒ fs(p) = Dir ℓ ∧ u ∈ ℓ

In this definition, the notation _ indicates an irrelevant hole, which may be filled by any

well-typed term. We use this convention throughout the chapter and dissertation.

In the previous section, we gave a flavor of the specifications one might write in

TxForest. We wrote these specifications in our surface language, which compiles down to

a core calculus, whose syntax is given in Figure 5.3. The core specifications are described

fully below, but to first provide an intuition, we show the translation of a simplified

version of the hw specification from Section 5.2:
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Specifications s ∈ Spec ::= File | Dir | e :: s | ⟨x :s1, s2⟩
| [s | x ∈ e] | s? | P(e)

Zippers z ::= {ancestor : Zipper option;
left : (Env × Spec) list;
focus : (Env × Spec);
right : (Env × Spec) list}

Commands c ::= fc | Skip | c1; c2 | x := e
| If b Then c1 Else c2 | While b Do c

Forest Commands fc ::= fn | fu
Forest Navigations fn ::= Down | Up | Next | Prev

| Into_Pair | Into_Comp | Into_Opt | Out
Forest Updates fu ::= Store_File e | Store_Dir e | Create_Path

Expressions e, b ::= fe | v | x | e1 e2 | . . .
Forest Expressions fe ::= Fetch_File | Fetch_Dir | Fetch_Path

| Fetch_Comp | Fetch_Opt | Fetch_Pred
| Run fn e | Run fe e | Verify

Log Entries le ::= Write_file C1 C2 p | Read C p
| Write_dir C1 C2 p

Logs σ : LogEntry list

Programs g ::= (p, s , c)

Figure 5.3: Main Syntax

directory {
max is "max" :: file;
students is [student :: file | s <- matches RE "[a-z]+[0-9]+"]}

becomes

⟨max:"max":: File, ⟨dir:Dir , [s :: File | s ∈ e]⟩⟩
where e = filter (Run Fetch_Dir dir) "[a-z]+[0-9]+"

Directories become dependent pairs, allowing earlier parts of directories to be

referenced by later parts. Comprehensions, which use regular expressions to query the

file system, also turn into dependent pairs: The first component of the pair is a Dir . The

second component fetches from and filters the first component using a regular expression.
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Section 5.3.4 gives examples of functions written against this specification using the

command language described below. We proceed by describing the syntax shown in

Figure 5.3 in-depth.

Formally, a TxForest specification s describes the shape and contents of a filestore,

which is a structured subtree of a file system. Such specifications are almost identical

to those in Forest [7]. Given the context of a current path p and environment E ,

specifications can be understood as follows:

• Files and Directories. The File and Dir specifications describe filestores with a file

and directory, respectively, at p.

• Paths. The e :: s specification describes a filestore modeled by s at the extension of

p by the value denoted by e (evaluated in E).

• Dependent Pairs. The ⟨x :s1, s2⟩ specification describes a filestore modeled by both s1

and s2. Additionally, s2 may use the variable x to refer to the portion of the filestore

matched by s1.

• Comprehensions. The [s | x ∈ e] specification describes a filestore modeled by s

when x is bound to any element in the set denoted by e and is only productively

used when s depends on x .

• Options. The s? specification describes a filestore where p is either unmapped in

the file system or modeled by s.

• Predicates. The P(e) specification describes a filestore where boolean e (evaluated

in E) is true. This construct is typically used with dependent pairs.

Most specifications can be thought of as trees with as many children as they have

sub-specifications. Comprehensions are the exception; we think of them as having as

many children as there are elements in the set e.
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To enable incremental and transactional manipulation of data contained in filestores,

TxForest uses a zipper that is constructed from a specification. The zipper traverses

the specification tree while keeping track of an environment that binds variables from

dependent pairs and comprehensions. The zipper can be thought of as representing a

tree along with the particular node of the tree that is in focus. We use the symbol focus

to represents the focus node; left and right represent its siblings to the left and right

respectively. The symbol ancestor tracks the focus node’s ancestors by containing the

value of the zipper before moving down to this depth of the tree. Key principles to keep

in mind regarding zippers are that (1) the tree can be unfolded as it is traversed and (2)

operations near the current node are fast, thus optimizing for locality.

To navigate a zipper, we use standard imperative (IMP) commands c as well as

special-purpose Forest Commands fc, divided into Forest Navigations fn and Forest

Updates fu. Navigation commands traverse the zipper, while Update commands modify

the file system. Expressions are mostly standard and pure: they never modify the

file system and only Forest Expressions query it. Forest Commands and Expressions

will be described in greater detail in Section 5.3.2. To ensure serializability among

multiple TxForest threads executing concurrently, we will maintain a log. An entry

Read C p indicates that we have read C at path p while Write_file C1 C2 p (respectively

Write_dir C1 C2 p) indicates that we have written the file (respectively directory) C2 to

path p, where C1 was before.

5.3.2 Semantics

Having defined the syntax, we now present the denotational semantics of TxForest. The

semantics of IMP commands are standard and thus elided. We start by defining the

semantics of a program:

J(p, s , c)Kg fs ≜ project_fs (JcKc ({}, p, {}, H{}, sI) fs)
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The denotation of a TxForest program is a function on file systems. We use the

specification s to construct a new zipper, seen in the figure using our zipper notation

defined in Section 4.2 and recapitulated below. Then we execute the command c using

the denotation function for commands J·Kc. This function takes a context, which we

construct using the zipper and the path p, and a file system fs as arguments. The

denotation function then produces a new context and file system, from which we project

out the file system with project_fs. As a reminder, we recapitulate our zipper notation

from Chapter 4:

Definition 4.2.1 (Zipper Notation). We define notation for constructing and deconstruct-

ing (i.e. pattern matching on) zippers. To construct a zipper we write:

left ↼ HfocusIz ⇀ right ≜ {ancestor = Some(z ); left; focus; right}

where any of ancestor, left, and right can be omitted to denote a zipper with

ancestor = None, left = [], and right = [] respectively. For example:

HfocusI ≜ {ancestor = None; left = []; focus; right = []}

Likewise, to destruct a zipper we write:

left ↼ LfocusMz ⇀ right

where any part can be omitted to ignore that portion of the zipper, but any included part

must exist. For example, z = L_Mz
′
:⇐⇒ z .ancestor = Some(z ′).

Finally, to construct a new zipper from an existing zipper and a focus node, we define:

z with f ≜ {z with focus = f}

The two key invariants that hold during the execution of any command are (1)

that the file system remains well-formed (Definition 2.3.1); and (2) that if p ∈ fs and

JfcKc (_, p/u, _, _) fs = ((_, p ′/u ′, _, _), fs ′, _) , then p ′ ∈ fs ′. The first property states that
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no command can make a well-formed file system ill-formed. The second states that, as

we traverse the zipper, we maintain a connection to the real file system. It is important

that only the parent of the current file system node is required to exist since this allows us

to construct new portions of the filestore and handle the option specification. A central

design choice that underpins the semantics is that each command acts locally on the

current zipper and does not require further context. This makes the cost of the operation

apparent and, as in Incremental Forest [4], facilitates partial loading and storing. These

properties can be seen from Figure 5.4 which defines the semantics of Forest Commands.

Each rule of the figure defines the meaning of evaluating a command in a given

context (E , p, ps , z ) and file system fs . The denotation function is partial, being undefined

if none of the rules apply. Intuitively, a command is undefined when it is used on a

malformed filestore with respect to its specification, or when it is ill-typed because it is

used on an unexpected zipper state. Operationally, the semantics of each command can

be understood as follows:

• Down and Up are duals: Down traverses the zipper into a path expression, simultane-

ously moving down in the file system, while Up does the reverse. Additionally, Down

queries the file system, producing a Read.

• Into and Out are duals: Into traverses the zipper into its respective type of

specification, while Out moves back out to the parent node. Additionally, their

subexpressions may produce logs.

For dependent pairs, we update the environment of the second child with a context

constructed from the first specification.

For comprehensions, the traversal requires the set denoted by e to be non-empty,

and maps it to a list of children with the same specification, but environments with

different mappings for x , before moving to the first child.

• Next and Prev are duals: Next traverses the zipper to the right sibling and Prev
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z = LEL, e :: sM (u, σ) = JeKe (EL, p, ps , z ) fs
Dir ℓ = fs(p) σ′ = σ · (Read (Dir ℓ) p)

JDownKc (E , p, ps , z ) fs = ((E , p/u, ps ∪ (p/u), HEL, sIz ), fs , σ′)

z = L_Mz
′

z ′ = L_, e :: sM
JUpKc (E , p, ps , z ) fs = ((E , pop p, ps , z ′), fs , ε)

z = LEL, s?M

JInto_OptKc (E , p, ps , z ) fs = ((E , p, ps , HEL, sIz ), fs , ε)

z = LEL, ⟨x :s1, s2⟩M ctxt = (EL, p, ps , HEL, s1I)

JInto_PairKc (E , p, ps , z ) fs = ((E , p, ps , HEL, s1Iz ⇀ [(EL[x 7→ ctxt ], s2)]), fs , ε)

z = LEL, [s | x ∈ e]M (h · t, σ) = JeKe (EL, p, ps , z ) fs
r = map (λu. (EL[x 7→ u], s)) t

JInto_CompKc (E , p, ps , z ) fs = ((E , p, ps , HEL[x 7→ h], sIz ⇀ r), fs , σ)

z = L_Mz
′

z ′ ̸= L_, e :: sM
JOutKc (E , p, ps , z ) fs = ((E , p, ps , z ′), fs , ε)

z = l ↼ Lf ′Mz
′
⇀ (f · r)

JNextKc (E , p, ps , z ) fs = ((E , p, ps , (f ′ · l) ↼ HfIz
′
⇀ r), fs , ε)

z = (f · l) ↼ Lf ′Mz
′
⇀ r

JPrevKc (E , p, ps , z ) fs = ((E , p, ps , l ↼ HfIz
′
⇀ (f ′ · r)), fs , ε)

z = L_,FileM (u, σ) = JeKe (E , p, ps , z ) fs (fs ′, σ′) = make_file fs p u

JStore_File eKc (E , p, ps , z ) fs = ((E , p, ps , z ), fs ′, σ · σ′)

z = L_,DirM (ℓ, σ) = JeKe (E , p, ps , z ) fs (fs ′, σ′) = make_directory fs p ℓ

JStore_Dir eKc (E , p, ps , z ) fs = ((E , p, ps , z ), fs ′, σ · σ′)

z = LEL, e :: sM (u, σ) = JeKe (EL, p, ps , z ) fs
(fs ′, σ′) = create fs p/u σ′′ = σ · (Read fs(p) p) · σ′

JCreate_PathKc (E , p, ps , z ) fs = ((E , p, ps , z ), fs ′, σ′′)

Figure 5.4: fc Command Semantics
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moves to the left sibling.

• Store_File e, Store_Dir e, and Create_Path all update the file system, leaving

the zipper untouched. The definitions of the helper functions that they use can be

found in Figure 5.6. All of them maintain a well-formed file system and produce

logs recording their effects.

For Store_File e, e must evaluate to a string u, after which the command turns

the current file system node into a file containing u.

For Store_Dir e, e must evaluate to a string set ℓ, after which the command turns

the current file system node into a directory containing that set. If the node is

already a directory containing ℓ′, then any children in ℓ′ \ ℓ are removed, any

children in ℓ\ℓ′ are added (as empty files), and any children in ℓ∩ℓ′ are untouched.

For Create_Path, the current node is turned into a directory containing the path

to which the path expression points. The operation is idempotent and does the

minimal work required: If the current node is already a directory, then the path

is added. If the path was already there, then Create_Path is a no-op, otherwise it

will map to an empty file.

We have covered the semantics of all of the Forest Commands, but their subexpres-

sions remain. The semantics of non-standard expressions is given in Figure 5.5. The

interpretation of each rule is the same as for commands. There is one Fetch expression

per specification except for pairs, which have no useful information available locally.

Since a pair is defined in terms of its sub-specifications, we must navigate to them before

fetching information from them. This design avoids incurring the cost of eagerly loading

a large filestore.

Fetching a file returns the string contained by the file at the current path. For a

directory, we get the names of its children. Both of these log Reads since they inspect the

file system. For a path specification, the only locally available information is the actual
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z = L_,FileM File u = fs(p)

JFetch_FileKe (E , p, ps , z ) fs = (u, [Read (File u) p])

z = L_,DirM Dir ℓ = fs(p)

JFetch_DirKe (E , p, ps , z ) fs = (ℓ, [Read (Dir ℓ) p])

z = LEL, e :: sM
JFetch_PathKe (E , p, ps , z ) fs = JeKe (EL, p, ps , z ) fs

z = LEL, [s | x ∈ e]M
JFetch_CompKe (E , p, ps , z ) fs = JeKe (EL, p, ps , z ) fs

z = L_, s?M
JFetch_OptKe (E , p, ps , z ) fs = (p ∈ fs , [Read fs(p) p])

z = LEL,P(e)M
JFetch_PredKe (E , p, ps , z ) fs = JeKe (EL, p, ps , z ) fs

(ctxt ′, σ′) = JeKe (E , p, ps , z ) fs (ctxt , fs , σ) = JfnKc ctxt ′ fs
JRun fn eKe (E , p, ps , z ) fs = (ctxt , σ′ · σ)

(ctxt , σ′) = JeKe (E , p, ps , z ) fs (v , σ) = JfeKe ctxt fs
JRun fe eKe (E , p, ps , z ) fs = (v , σ′ · σ)

(p ′, z ′) = goto_root (E , p, ps , z ) fs

JVerifyKe (E , p, ps , z ) fs = PConsistent (p ′, ps , z ′) fs

Figure 5.5: Expression Semantics

path. For a comprehension, we return the set e. For an option, we determine whether

the current path is in the file system and log a Read regardless. Finally, for a predicate,

we determine if its condition holds.

There are two Run expressions. Subexpression e must evaluate to a context. These

can only come from a dependent pair, which means that Run can only occur as a

subexpression of specifications. We utilize them by performing traversals (Run fn e) and

evaluating Forest expressions (Run fe e) in the input context. For example, a filestore

defined by a file index.txt and a set of files listed in that index could be described as
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make_file : File system → Path → Σ∗ → File system × Log

make_directory : File system → Path → 2Σ
∗ → File system × Log

create : File system → Path → Σ∗ → File system × Log
close_fs : File system → File system

make_file fs p u ≜
let (fs', σ') = create fs p in
let σ = σ' · (Write_file fs'(p) (File u) p) in
(close_fs (fs'[p 7→ File u]), σ)

make_directory fs p ℓ ≜
let (fs', σ') = create fs p in
let σ = σ' · (Write_dir fs'(p) (Dir ℓ) p) in
(close_fs (fs'[p 7→ Dir ℓ]), σ)

create fs p/u ≜
match fs(p) with
| ⊥ →

let (fs', σ') = create fs p in
let σ = σ' · (Write_dir (File ε) (Dir {u}) p) in
(close_fs (fs'[p 7→ Dir {u}]), σ)

| File u' →
(close_fs (fs[p 7→ Dir {u}]), [Write_dir (File u') (Dir {u}) p])

| Dir ℓ when u /∈ ℓ →
(close_fs (fs[p 7→ Dir (ℓ ∪ {u})]), [Write_dir (Dir ℓ) (Dir (ℓ ∪ {u})) p])

| Dir ℓ when u ∈ ℓ → (fs, [])

close_fs fs ≜ close_at fs /
where close_at fs p ≜

match fs(p) with
| Dir ℓ →

let ℓ' = {p/u | u ∈ ℓ} in
let fs' = fold fs ℓ' close_at in
let ℓ'' = {p' ∈ fs | subpath p' p ∧ ∀p'' ∈ ℓ'. ¬subpath p' p''} in
let fs'' = fold fs' ℓ'' (λfs p'. fs[p' 7→ ⊥]) in
fs''[p 7→ Dir ℓ]

| File u →
let fs' = fold fs {p' ∈ fs | subpath p' p} (λfs p'. fs[p' 7→ ⊥]) in
fs'[p 7→ File u]

| ⊥ → fs[p 7→ File ε]

Figure 5.6: TxForest Helper Functions
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follows:

⟨index:"index.txt" :: File, [x :: File | x ∈ e]⟩
where e = lines_of (Run Fetch_File (Run Down index))

where lines_of maps a string to a string set by splitting it by lines.

Finally, Verify checks the partial consistency of the traversed part of the filestore—

whether it conforms to our specification. Unfortunately, checking an entire filestore,

even incrementally, can be very expensive and, often, we have only performed some

local changes and thus do not need the full check. Partial consistency is a compromise

wherein we check only the portions of the filestore that we have traversed, as denoted

by the path set. This ensures that the cost of the check is proportional to the cost of

the operations we have already run. Partial consistency is formally defined in the next

subsection, which among other properties, details the connection between partial and

full consistency.

5.3.3 Properties

This section establishes properties of the TxForest core calculus: consistency and partial

consistency, equational identities on commands, and round-tripping laws.

The formal definition of partial consistency is given in Figure 5.7. Intuitively, full

consistency (Consistent) captures whether a filestore conforms to its specification. For

example, the file system fs at p conforms to File if and only if fs(p) = File _ and to e :: s

if e evaluates to u and fs at p/u conforms to s. Partial consistency (PConsistent) then

checks partial conformance (i.e. does the filestore conform to part of its specification).

PConsistent returns two booleans (and a log), the first describing whether the input

filestore is consistent with the input specification and the second detailing whether

that consistency is total or partial. The definition of full consistency is similar to partial

consistency, except that there are no conditions and the path set is ignored. The properties
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p /∈ ps

PConsistent (p, ps , z ) fs = ((true, false), ε)

p ∈ ps

PConsistent (p, ps , L(E ,File)M as z ) fs = ((fs(p) = File _, true), [Read fs(p) p])

p ∈ ps

PConsistent (p, ps , L(E ,Dir)M as z ) fs = ((fs(p) = Dir _, true), [Read fs(p) p])

p ∈ ps (u, σ) = JeKe (E , p, ps , z ) fs
ret = ((fs(p) = Dir _, true), σ · (Read fs(p) p))

ret ′ = ret ∧σ PConsistent (p/u, ps , H(E , s)Iz ) fs
PConsistent (p, ps , L(E , e :: s)M as z ) fs = ret ′

p ∈ ps ctxt = (E , p, ps , H(E , s1)I) E ′ = E [x 7→ ctxt ]

ret = PConsistent (p, ps , H(E , s1)Iz ⇀ [(E ′, s2)]) fs

ret ′ = ret ∧σ PConsistent (p, ps , [(E , s1)] ↼ H(E ′, s2)Iz ) fs
PConsistent (p, ps , L(E , ⟨x :s1, s2⟩)M as z ) fs = ret ′

p ∈ ps (ℓ, σ′) = JeKe (E , p, ps , z ) fs

((b1, b2), σ) =
∧
v∈ℓ

PConsistent (p, ps , H(E [x 7→ v ], s)Iz ) fs

PConsistent (p, ps , L(E , [s | x ∈ e])M as z ) fs = ((b1, b2), σ
′ · σ)

p ∈ ps ret = ((p /∈ fs , true), [Read fs(p) p]) ∨σ PConsistent (p, ps , H(E , s)Iz ) fs
PConsistent (p, ps , L(E , s?)M as z ) fs = ret

p ∈ ps (b, σ) = JeKe (E , p, ps , z ) fs

PConsistent (p, ps , L(E ,P(e))M as z ) fs = ((b, true), σ)

((false, _), σ) ∧σ _ ≜ ((false, false), σ)

((b1, b2), σ) ∧σ ((b ′1, b
′
2), σ

′) ≜ ((b1 ∧ b ′1, b2 ∧ b ′2), σ · σ′)

((true, true), σ) ∨σ _ ≜ ((true, true), σ)

((b1, b2), σ) ∨σ ((b ′1, b
′
2), σ

′) ≜ ((b1 ∨ b ′1, b2 ∨ b ′2), σ · σ′)

complete? ((_, b), _) ≜ b

consistent? ((b, _), _) ≜ b

Cover (p, ps , z ) fs :⇐⇒ complete? (PConsistent (p, ps , z ) fs)

Figure 5.7: Partial Consistency and Cover
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below describe the relationship between partial consistency and full consistency. Their

proofs can be found in Appendix B.1.2.

Theorem 5.3.1. Consistency implies partial consistency:

∀ps . consistent? (Consistent (p, ps , z ) fs) =⇒

consistent? (PConsistent (p, ps , z ) fs)

Theorem 5.3.2. Partial Consistency is monotonic w.r.t. the path set:

∀ps1, ps2. ps2 ⊆ ps1 =⇒

consistent? (PConsistent (p, ps1, z ) fs) =⇒

consistent? (PConsistent (p, ps2, z ) fs)

∧ complete? (PConsistent (p, ps2, z ) fs) =⇒

complete? (PConsistent (p, ps1, z ) fs)

Theorem 5.3.2 says that if a filestore defined by z is partially consistent with respect

to ps1, then it will also be partially consistent with respect to any path set ps2 that is a

subset of ps1. Conversely, if partial consistency with respect to ps2 is total, or complete,

then as is partial consistency with respect to ps1.

Theorem 5.3.3. Given a zipper z and a path set ps ′ that covers the entirety of z , partial

consistency holds iff full consistency holds:

∀ps , ps ′. Cover (p, ps ′, z ) fs ∧ ps ′ ⊆ ps =⇒

consistent? (Consistent (p, ps , z ) fs) ⇐⇒

consistent? (PConsistent (p, ps , z ) fs)

Theorem 5.3.3 says that if the path set ps is a superset of one that covers the entire

filestore ps ′, as defined in Figure 5.7, then the filestore is totally consistent exactly when

it is partially consistent with respect to ps . Intuitively, if a path set covers a filestore then

we can never encounter a path outside of the path set while traversing the zipper.
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Other properties of the language include identities of the form JDown; UpKc ≡ JSkipKc

where ≡ denotes equivalence modulo log, when defined. That is, either JDown; UpKc is

undefined, or it has the same action as JSkipKc, ignoring logging. Additionally, we have

proven round-tripping laws in the style of lenses [12] stating, for example, that storing

just loaded data is equivalent to Skip. Further identities and formal statements of these

laws can be found in Appendix B.1.2.

5.3.4 Examples

This subsection details the core calculus encodings of a few useful functions for interfacing

with the course management system introduced in Section 5.2. The goal is to build an

intuition for the language and how to program with the zipper abstraction. In practice, a

higher-level language would compile to this core calculus.

For these examples, we assume that in variables contain input arguments at the

start of each function and that out variables should contain the output of the function, if

any, at the end. Additionally, all examples are written against the same single-homework

specification that we saw earlier, in both our higher-level description language and in

the core calculus:

directory {
max is "max" :: file;
students is [student :: file | s <- matches RE "[a-z]+[0-9]+"]}

that is,

⟨max:"max":: File, ⟨dir:Dir , [s :: File | s ∈ e]⟩⟩
where e = filter (Run Fetch_Dir dir) "[a-z]+[0-9]+"

That said, we proceed to code simple primitive functions for getting and setting the

score of a single student and for adding a student, a fold function over path compre-

hensions, and finally a function for getting the average score of all students for a single

homework.
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getScore := λ(). to_int Fetch_File
setScore ≜ Store_File (of_int in)

In getScore and setScore, we assume that the zipper is already at a student. getScore,

which we can define as an expression in the language, takes a unit input and fetches the

current file, converting the string to an integer. setScore, like the rest of our examples,

is instead a metavariable representing a particular command. This command converts in

to a string before storing it as a file.

addStudent ≜
Into_Pair; Next; Into_Pair; # Go to dir
Store_Dir (Fetch_Dir ∪ {in}); # Add in to the directory
Out; Prev; Out # Return

In addStudent, we start from the root of the filestore and navigate to the first component

of the internal pair. We then fetch the names of the current files in the directory before

adding in and storing it back. Finally, we return to the root.

fold ≜
num := length Fetch_Comp; Into_Comp;
While num > 0 Do

Down; # Enter path
inAcc := inF inAcc; # Execute function and update accumulator
Up; Next;num := num− 1 # Go to next element

Out;
out := inAcc

In fold, the zipper should start at a comprehension whose subspecification is a path

expression. We take two inputs: inAcc, which is the initial accumulator value, and inF ,

which is a function that produces a new accumulator from the old one. The code for

fold starts by getting the number of elements in the comprehension and then traverses

the elements one by one, calling inF to update the accumulator at each element.

Finally, getAvg computes the average score across all students:

getAvg ≜
Into_Pair; Next; Into_Pair; Next;
number := length Fetch_Comp;
inAcc := 0;
inF := λx. getScore () + x;
fold;
Prev; Out; Prev; Out;
out := out / number
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ts ∈ Timestamp Timestamps
GL ∈ TSLog Timestamped Logs
td ∈ Thread ≜ Context × File system × Command

TxS ∈ TxState ≜ Command × Timestamp × Log
t ∈ Transaction ≜ Thread × TxState
T ∈ Transaction Pool ≜ Transaction Bag

Figure 5.8: Global Semantics Additional Syntax

It starts at the root of the filestore and navigates to the comprehension. Next, it stores

the number of students in number , sets inAcc to 0 and constructs inF , which gets the

score of the current student and adds it to its argument. Then it folds, returns to the root

of the filestore, and finally divides the result of the fold (out) by the number of students

to obtain the final result.

5.4 Concurrency Control

This section introduces the global semantics of Transactional Forest, using both a denota-

tional semantics to concisely capture a serial semantics and an operational semantics

to capture thread interleavings and concurrency. We also state a serializability theorem

that relates the two semantics.

Figure 5.8 lists the additional syntax used in this section. Timestamped logs are the

logs of the global semantics. They are identical to local logs except that each entry also

contains a timestamp indicating when it was written to the log.

Each Thread is captured by its local context which, along with its transactional state

TxState, denotes a Transaction. The transactional state has 3 parts: (1) the command

the transaction is executing; (2) the time when the transaction started; and (3) the

transaction-local log recorded so far.
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Our global denotational semantics is defined as follows:

J((ctxt , _, c), _)KG fs ≜ project_fs (JcKc ctxt fs)

JℓKG fs ≜ fold fs ℓ J·KG

The denotation of one or more transactions is a function on file systems. For a single

transaction, it is the denotation of the command with the encapsulated context, except

for the file system that is replaced by the input. For a list of transactions, it is the

result of applying the local denotation function in serial order. Note that the denotation

of a transaction is precisely the denotation of a program, J·Kg , which can be lifted to

multiple programs by folding. The key point about this semantics is that there is no

interleaving of transactions. By definition, transactions run sequentially. While this

ensures serializability, it also does not allow concurrency.

We will instead use an operational semantics that more easily models transaction

interleaving and prove that it is equivalent to the denotational semantics. First, we

introduce an operational semantics for local commands. This semantics is standard for

IMP commands, but for Forest Commands, it uses the denotational semantics, considering

each a single atomic step, as seen below:

((E ′, p ′, ps ′, z ′), fs ′, σ) = JfcKc (E , p, ps , z ) fs

⟨(E , p, ps , z ), fs , fc⟩ σ−→L ⟨(E ′, p ′, ps ′, z ′), fs ′, Skip⟩

Next, we can construct the global operational semantics, as seen in Figure 5.9. The

global stepping relation is between two global contexts that have three parts: a global

file system, a global log, and a transaction pool—i.e. a bag of transactions.

There are only three actions that the global semantics can take:

1. A transaction can step in the local semantics and append the resulting log.

2. A transaction that is done, and does not conflict with previously committed trans-

actions, can commit. It must check that none of its operations conflicted with those
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⟨td⟩ σ′
−→L ⟨td ′⟩

⟨FS ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨FS ,GL, {(td ′, (cs , ts , σ · σ′))} ⊎ T ⟩

is_Done? td check_log GL σ ts
FS ′ = merge FS σ GL′ = GL · (add_ts fresh_ts σ)

⟨FS ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨FS ′,GL′,T ⟩

is_Done? td ¬(check_log GL σ ts) ts ′ = fresh_ts
(z ′, p ′) = goto_root (E , p, ps , z ) fs td ′ = (({}, p ′, {}, z ′),FS , cs)
⟨FS ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨FS ,GL, {(td ′, (cs , ts ′, []))} ⊎ T ⟩

Figure 5.9: Global Operational Semantics

merge FS σ ≜ fold FS σ update

update fs (Read C p) ≜ fs

update fs (Write_file _ C p) ≜ close_fs (fs [p 7→ C ])

update fs (Write_dir _ C p) ≜ close_fs (fs [p 7→ C ])

check_log GL σ ts ≜ ∀p ′ ∈ extract_paths σ. ∀(ts ′, le) ∈ GL.
ts > ts ′ ∨ ¬(conflict_path p ′ le)

conflict_path p ′ (Read _ p) ≜ false

conflict_path p ′ (Write_file _ _ p) ≜ subpath p ′ p

conflict_path p ′ (Write_dir _ _ p) ≜ subpath p ′ p

extract_paths [] ≜ {}
extract_paths ((Read _ p) · tl) ≜ {p} ∪ (extract_paths tl)

extract_paths ((Write_file _ _ p) · tl) ≜ {p} ∪ (extract_paths tl)

extract_paths ((Write_dir _ _ p) · tl) ≜ {p} ∪ (extract_paths tl)

Figure 5.10: merge and check_log

committed since its start. Conflicts occur when the transaction read stale data. To

commit, the transaction will update the global file system according to any writes

performed. Finally, the transaction will leave the transaction pool. The definitions

of check_log and merge can be found in Figure 5.10.

3. A transaction that is done but conflicts with previously committed transactions

cannot commit; it instead must restart. It restarts by getting a fresh timestamp and

resetting its log and local context.
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In the operational semantics, transaction steps can be interleaved arbitrarily, but

changes will get rolled back in case of a conflict. Furthermore, while Forest Commands

are treated as atomic for simplicity they could also be modeled at finer granularity

without affecting our results.

With a global semantics where transactions are run concurrently, we now aim to

prove that our semantics guarantees serializability. The theorem below captures this

property by connecting the operational and denotational semantics:

Theorem 5.4.1 (Serializability). Let FS ,FS ′ be file systems, GL,GL′ be global logs, and

T a transaction pool such that ∀t ∈ T . initial FS t . Then:

⟨FS ,GL,T ⟩ →∗
G ⟨FS ′,GL′, {}⟩ =⇒ ∃ℓ ∈ Perm(T ). JℓKG FS = FS ′

where →∗
G is the reflexive, transitive closure of →G.

The serializability theorem states that given a starting file system and a transac-

tion pool of starting transactions, if the global operational semantics commits them

all, then there is some ordering of these transactions for which the global denotational

semantics will produce the same resulting file system. Note that although not required by

the theorem, the commit order is one such ordering. Additionally, though not explicitly

stated, it is easy to see that any serial schedule that is in the domain of the denotation

function is realizable by the operational semantics. See Appendix B.1.1 for the proof.

The prototype system described in the next section implements the local semantics

from the previous section along with this global semantics, reducing the burden of

writing correct concurrent applications.
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5.5 Implementation

This section describes our prototype implementation of Transactional Forest as an em-

bedded domain-specific language in OCaml. Our prototype comprises 6089 lines of code

(excluding blank lines and comments) and encodes Forest’s features as a PPX syntax

extension. We have also implemented a prototype in Python, which provides most of the

features described below.

We have implemented a simple course management system similar to the running

example from Section 5.2. Beyond adding students, the system has several additional

facilities, including renormalizing grades, computing various statistics about students

or homeworks and changing rubrics while automatically updating student grades ac-

cordingly. The most interesting piece of the example is based on our experience with a

professional grading system that uses a queue from which graders can get new problems

to grade. Unfortunately, this system did not adequately employ concurrency control,

resulting in duplicated work. Using TxForest, we implemented a simple grading queue

where graders can add and retrieve problems, which does not suffer from such concur-

rency issues.

The embedded language in our prototype implementation implements almost pre-

cisely the language seen in Section 5.3. Additionally, we provide a surface syntax (as

seen in Section 5.2 and papers on the earlier versions of Forest [4, 7]) for specifications

that compiles down to the core calculus seen in Section 5.3. This specification can then

be turned into a zipper by initiating a transaction. The majority of the commands and

expressions seen in the core semantics are exposed as functions in a library. Additionally,

there is a more ad hoc surface command language that resembles the surface syntax and

parallels the behavior of the core language. Finally, the global semantics looks slightly

different compared to in Section 5.4, though this should not affect users and the minor

109



variant has been proven correct. We provide a simple shell for interacting with filestores,

which makes it significantly easier to force conflicts and test the concurrent semantics.

5.6 Conclusion

This chapter has presented the design, syntax, and semantics of Transactional Forest,

a domain-specific language for incrementally processing ad hoc data in concurrent

applications. TxForest aims to provide an easier and less error-prone approach to

modeling and interacting with a structured subset of a file system, which we call a

filestore. We achieve this by using Huet’s Zippers [23] as the core abstraction. This

traversal-based structure naturally lends itself to incrementality and a simple, efficient,

logging scheme that supports optimistic concurrency control. We provide a core language

with a formal syntax and semantics based on zipper traversal, both for local, single-

threaded applications, and for a global view with arbitrarily many Forest processes. We

prove that this global view enforces serializability between threads, that is, the resulting

effect on the file system of any set of concurrent threads is the same as if they had run

in some serial order. Our OCaml and Python prototypes provides a surface language

mirroring Forest [7] and a library of functions for manipulating the filestore.

While Transactional Forest offers significant benefits in managing concurrent file-

stores, it is unable to offer guarantees with respect to other (i.e. non-TxForest) concurrent

processes on the file system. Additionally, the semantics and proofs are predicated on

the correctness of the file system interface, but they unfortunately tend to be informally

specified. The next chapter seeks to resolve these issues by designing a new transactional

file system upon which Transactional Forest can run.
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Chapter 6

The Zipper File System:

A Zipper-based Transactional File System

Acknowledgments. The content of this chapter was developed in collaboration

with Nate Foster and Katie Mancini from Cornell University and Kathleen Fisher

from Tufts University.

Brief Summary

This chapter introduces the Zipper File System (ZFS), a transactional file system with a

novel underlying abstraction and a formal semantics describing its behavior. This file

system is based on Kiselyov’s ZFS design [27]. It uses a zipper abstraction to represent

both the tree structure and the working path of a file system. We provide a denotational

semantics to describe the operation of ZFS, both at the local and global level. We design

an operational global semantics, which allows thread interleavings, and we prove that

it provides serializable transactions among arbitrary concurrent processes by relating

it to the denotational semantics. We also provide a translation from POSIX into ZFS to

allow standard POSIX applications to benefit from the serializable transactions that ZFS

supports. We also formalize a subset of POSIX denotationally in order to support this

translation, where the formalization can be seen as a contribution of its own. Finally, we
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have implemented a prototype of ZFS in OCaml.

6.1 Introduction

Transactional Forest (from the previous chapter) is a domain-specific language that lets

users incrementally process ad hoc data in concurrent applications. TxForest leverages

zippers to provide a formal semantics for both the local (single-threaded) and global

(concurrent) operation of applications that interface with TxForest. We prove that the

global semantics provides serializability among concurrent, TxForest threads.

TxForest suffers from two weaknesses: (1) it offers no guarantees with respect to

concurrent non-TxForest processes; and (2) it is correct only relative to some assumptions

about the file system on which it runs. File system interfaces tend to be informally

(under)specified.

We could move TxForest to an existing transactional file system to solve the first

issue, though none are in common use. However, we are unaware of any transactional file

systems having a formal proof of correctness or even a formal semantics [5, 14, 22, 41].

Therefore, we decided to start from scratch and consider what a new file system that

supports transactions could look like. The ideas that we use in TxForest should apply

natively, and we pursue that course in this chapter.

We design a new transactional file system Zipper File System (ZFS). This file system

is heavily inspired by Kiselyov’s work on a file system of the same name [27]. Our goals

are to supply provably serializable transactions and a formal semantics. As observed in

Chapters 4 and 5, tree zippers, as opposed to the flat maps that are traditionally used,

are a natural fit as an underlying abstraction for a file system. Additionally, by designing

the file system around zippers, it becomes simple to connect the semantics of the file

system to TxForest due to their similarity.

In this chapter, we put the zipper front-and-center, designing a new core language

112



as the interface to ZFS. Additionally, we provide a formal translation from a core subset

of POSIX. In order to provide such a translation, we also formulate a formal semantics

for POSIX that mostly matches its informal specification (but with some error cases done

away with for simplicity). Incorporating any one of these error cases would be tedious,

but not difficult, and could be done in a modular fashion.

The formal semantics of ZFS is split into a local portion, describing the interface

for programs written against ZFS, and a global portion, which describes the transaction

management piece. We employ optimistic concurrency control to provide serializability

among arbitrary ZFS transactions. Any program that interfaces with ZFS is considered a

transaction, allowing the system to provide strong guarantees with respect to arbitrary

concurrent processes. Additionally, we give a proof of these guarantees.

The translation from POSIX means that ZFS could be run as the root file system,

with a POSIX file system as a layer of abstraction above it. This file system could only

provide the core POSIX commands specified, but using a second translation layer one

could allow a larger set of POSIX commands, most of which can be captured by the core

commands (as noted in Gardner et al.’s paper on reasoning about POSIX [15]). This

would provide a POSIX interface with serializable transactions.

To summarize, the contributions of this chapter are:

1. The design of the Zipper File System, a transactional file system that uses zippers

as its underlying abstraction, and a formal semantics describing its behavior.

2. A proof of serializability for this semantics.

3. A semantics for a core subset of POSIX.

4. A translation from this subset of POSIX to ZFS.

5. A prototype implementation of ZFS.

The rest of the chapter proceeds as follows: Section 6.2 formalizes ZFS, describing

the local and global semantics. Section 6.3 introduces the POSIX formalization and
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Strings u ∈ Σ∗

Names a ∈ Name
Integers n ∈ Z
Data d ∈ D
Variables x ∈ Var
Values v ∈ Val
Environments E ∈ Env : Var 7→ Val

Figure 6.1: Preliminaries

its translation to ZFS. Section 6.4 describes our prototype implementation of ZFS.

Section 6.5 goes through a series of potential extensions that we have considered and

Section 6.6 concludes.

6.2 The Zipper File System

In this section, we introduce the syntax and file system model of ZFS. We describe the

denotational semantics of the local command language before introducing the global

transaction manager semantics. Then we state our serializability theorem.

6.2.1 Syntax

We present the meta-variables that we use in Figure 6.1 and the syntax of ZFS in

Figure 6.2:

• The file system is modeled as a tree. A tree node t is either a directory with a set of

named children (Dir {a × t}) or a file containing some data (File d). For a standard

implementation, this data would likely be a bitstring, but the formalism admits

other typed representations, and it would be quite easy to impose a simple type

system on top of the commands given below.

• Paths p are either absolute or relative, denoted by the path’s leftmost symbol as /

and . respectively. This symbol is followed by a sequence of path elements pe. For
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Trees t ::= Dir {a × t} | File d
Paths p ::= / | . | p/pe
Path Elements pe ::= a | ..
Zippers z ::= {ancestor : Zipper option;

left : (a × t) list;
focus : (a × t);
right : (a × t) list; }

Commands c ::= zc | Skip | c1; c2 | x := e
| If b Then c1 Else c2 | While b Do c

ZFS Commands zc ::= zn | zu
ZFS Navigations zn ::= Down | Up | Next | Prev
ZFS Updates zu ::= Update_File e | RemoveChild e | AddChild e1 e2

Values v ::= p | pe | a | d | true | false | . . .
Expressions e, b ::= ze | v | x | e1 e2 | . . .
ZFS Expressions ze ::= ztf | Fetch | Name
ZFS Tree Functions ztf ::= Construct_File | Construct_Dir | Copy

Log Entries le ::= Write_file C1 C2 p | Read C p
| Write_dir C1 C2 p

Logs σ : LogEntry list

Figure 6.2: The syntax of ZFS

a path p/pe, the path element pe can either denote a child of the directory at path

p called a or the parent directory of p if the path element is the special symbol ‘..’.

• Zippers z are tagged unions representing a focus node and the context surrounding

it. The focus node is either the root of the file system or has an ancestor; thus the

ancestor is either a zipper or nothing. The focus node may also have siblings to its

left and right, which are represented as lists of named trees. The first element

of both left and right is the focus node’s closest sibling on that side. Finally, the

focus node itself is a named tree.

• Commands c are the interface to ZFS. They include standard IMP operations as

well as the ZFS Commands zc which are divided into two parts:
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1. The ZFS Navigations zn which are operations that solely traverse the file

system but do not modify the underlying tree. They allow users to move

from the focus node Up to the parent node, Down to the first child, Next to the

closest sibling on the right, and Prev to the closest sibling on the left.

2. The ZFS Updates zu in contrast, are operations that solely modify the tree at

the focus node but do not traverse the file system. Update_File modifies the

file at the focus node to contain its input data. RemoveChild takes a name and

removes the named child from the directory in focus. AddChild takes both a

name a and a tree and adds that tree to the focus directory as a child named a.

Importantly, trees can only be obtained by users with the ZFS Tree Functions

mentioned below, which means that AddChild does not allow constructing

new and arbitrary subtrees in the file system.

• Values v are standard. As are expressions e, though they additionally include the

ZFS Expressions ze. These have three parts:

1. The ZFS Tree Functions ztf are the only way to produce trees in the language.

Construct_File and Construct_Dir produce an empty file and an empty

directory respectively. Copy instead returns a copy of the tree at the focus

node. Since trees cannot be destructed in the language, this can solely be

used with AddChild to create a deep copy of the subtree in focus, or, with the

addition of RemoveChild, to move the subtree.

2. The Fetch expression is reminiscent of Copy in that it returns a copy of the

focus node’s tree. However, it transforms that copy into a more lightweight

form, which is destructable, by only including the names of the children of a

directory rather than the entire subtree.

3. The Name expression simply returns the name of the focus node.
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J·KZc : Command → Env × Zipper ⇀ (Env × Zipper)× Log

J·KZe : Exp → Env × Zipper → Val × Log

z = L(a ′,Dir ((a, t) · r))M z ′ = z with (a ′,Dir ∅)

JDownKZc (E , z ) = ((E , H(a, t)Iz
′
⇀ r), σ · (log_read z ))

z = l ↼ LfMz
′
⇀ r z ′ = L(a,Dir ∅)M

JUpKZc (E , z ) = ((E , z ′ with H(a,Dir ((reverse l) · f · r))I), ε)

z = l ↼ Lf ′Mz
′
⇀ (f · r)

JNextKZc (E , z ) = ((E , (f ′ · l) ↼ HfIz
′
⇀ r), ε)

z = (f · l) ↼ Lf ′Mz
′
⇀ r

JPrevKZc (E , z ) = ((E , l ↼ HfIz
′
⇀ (f ′ · r)), ε)

z = L(a,File _)M (d , σ) = JeKZe (E , z )

JUpdate_FileKZc (E , z ) = ((E , z with (a,File d)), σ · (log_file_write z d))

(a ′, σ) = JeKZe (E , z ) z = L(a,Dir ℓ)M (a ′, t) ∈ ℓ
σ′ = σ · (log_dir_RW z (ℓ \ {(a ′, t)}))

JRemoveChild eKZc (E , z ) = ((E , z with (a,Dir (ℓ \ {(a ′, t)}))), σ′)

(a ′, σ) = Je1KZe (E , z ) (t , σ′) = Je2KZe (E , z ) z = L(a,Dir ℓ)M (a ′, _) /∈ ℓ
σ′′ = σ · σ′ · (log_dir_RW z (ℓ ∪ {(a ′, t)}))

JAddChild e1 e2KZc (E , z ) = ((E , z with (a,Dir (ℓ ∪ {(a ′, t)}))), σ′′)

Figure 6.3: ZFS Command Semantics

• Finally, there are logs σ, which are lists of log entries. Log entries are records of

reads or writes that have occurred, carrying the original value, the modified value

(in the case of writes), and the path read or written.

6.2.2 Local Semantics

We present the semantics of ZFS in Figures 6.3 and 6.5. Additionally, there are several

useful derived commands and expressions provided in Figures 6.4 and 6.6 respectively.
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GotoChild a ≜ Down; While ¬(Name = a) Do Next

Goto / ≜ While ¬Is_Root Do Up

Goto . ≜ Skip

Goto p/a ≜ Goto p; GotoChild a

Goto p/.. ≜ Goto p; Up

GoDoReturn / c ≜ x := Name; While ¬Is_Root Do (Up; x := Name/x ); c; Goto x
where x is fresh

GoDoReturn . c ≜ c

GoDoReturn p/a c ≜ GoDoReturn p (GotoChild a; c; Up)

GoDoReturn p/.. c ≜ GoDoReturn p (x := Name; Up; c; GotoChild x )
where x is fresh

Figure 6.4: ZFS Derived Commands

At the top of Figure 6.3, the types of the command and expression denotations, J·KZc

and J·KZe respectively, are given. Both take an environment and a zipper pair as input

and return a log of their actions on the file system. Commands additionally return a new

environment and zipper, while expressions return a value. The inference rules in the

rest of the figure show the denotation of different ZFS Commands. Note that the IMP

commands are standard and thus excluded.

We repeat Definition 4.2.1 since we will be making heavy use of this zipper notation

in this section:

Definition 4.2.1 (Zipper Notation). We define notation for constructing and deconstruct-

ing (i.e. pattern matching on) zippers. To construct a zipper we write:

left ↼ HfocusIz ⇀ right ≜ {ancestor = Some(z ); left; focus; right}

where any of ancestor, left, and right can be omitted to denote a zipper with

ancestor = None, left = [], and right = [] respectively. For example:

HfocusI ≜ {ancestor = None; left = []; focus; right = []}
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Likewise, to destruct a zipper we write:

left ↼ LfocusMz ⇀ right

where any part can be omitted to ignore that portion of the zipper, but any included part

must exist. For example, z = L_Mz
′
:⇐⇒ z .ancestor = Some(z ′).

Finally, to construct a new zipper from an existing zipper and a focus node, we define:

z with f ≜ {z with focus = f}

The first four inference rules of Figure 6.3 are the ZFS Navigation Commands zn:

• Down gets the first child of the focus node and constructs a new zipper focused on

it. The new zipper uses a modification of the old zipper as ancestor, and the rest

of the children of the focus node become right. Down also returns the log that e

produces with a read appended.

The old zipper gets modified by removing all of its children. This ensures that

ancestors do not contain stale information: Because the zipper is a functional

structure that nonetheless allows local modification, updates have to be propagated

upward to ancestor nodes. This propagation is done when we step Up to an

ancestor. Unfortunately, with a naïve semantics, this propagation would invalidate

various nice properties. For example, if we are at the first child of a directory, we

might want to say that if JUp; DownKZc (E , z ) = ((E ′, z ′), _) holds then (E , z ) =

(E ′, z ′). However, if a sibling of the current node had changed and the ancestor

zipper contained stale information, then the second equality would not hold.

• Up makes the ancestor the new zipper after properly inserting its updated children

into the directory.

• Next and Prev are symmetric operations. Next moves the zipper focus to the right,

making the first node of right the new focus node, and the focus node the first

left-sibling.
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Using these local navigation commands, we can derive three others that move to specific

children or paths in the file system, as seen in Figure 6.4:

1. GotoChild takes a name as its argument, steps Down to the first child of the current

focus node, and walks to the Next sibling until the focus node has the desired

name. GotoChild uses the Name expression (described below) to find the name of

the focus node. If no child of the focus directory has the given name, GotoChild

will get stuck when it tries to go to the Next node and no right-siblings exist.

2. Goto takes a path and walks to it with a sequence of Up and GotoChild commands

(along with a while-loop to go to the root if necessary).

3. GoDoReturn takes both a path and a command as input and walks to the given path

(akin to Goto). Once it is at the given path, it executes its input command and

walks back from whence it came. GoDoReturn uses the name of the focus node to

return to it after going Up. For example, it reconstructs its current path (in order to

return from the root) by interspersing Up commands and calls to Name. Note that

GoDoReturn will only work properly if the zipper is in the same location before and

after executing the input command.

The three final rules of Figure 6.3 are the ZFS Update Commands zu:

• Update_File e evaluates e to a data object, which has whatever type you want to

support for your files (usually a bitstring). Then, assuming that it is currently at

a file, it will change its contents to the result of the evaluation. Simultaneously,

Update_File logs this write and appends it to the result of its expression evaluation.

• RemoveChild e evaluates e to the name of a child of the current directory. It then

removes that child from the directory and logs a directory read and write.

• AddChild e1 e2 evaluates e1 to the name of a child that is not in the current directory,

then it inserts a child with that name whose contents are the result of evaluating
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z = L(_,File d)M
JFetchKZe (E , z ) = (File d , log_read z )

z = L(_,Dir ℓ)M
JFetchKZe (E , z ) = (Dir (extract_names ℓ), log_read z )

z = L(a, _)M
JNameKZe (E , z ) = (a, log_read z )

JConstruct_FileKZe (E , z ) = (File ε, ε)

JConstruct_DirKZe (E , z ) = (Dir ∅, ε)

z = L(_, t)M
JCopyKZe (E , z ) = (t , log_read z )

Figure 6.5: ZFS Expression Semantics

e2. It also logs a directory read and write.

The ZFS Expressions are shown in Figure 6.5, and they work as follows:

• Fetch returns a representation of the focus node. Since all operations are local by

design, if the current node is a directory, Fetch will only return a list of the names

of its children. For a file, it will return its contents. In both cases, a read is logged

and the values are properly encapsulated in a sum type.

• Name returns the name of the focus node and logs a read.

• Construct_File constructs an empty file for use with AddChild.

• Construct_Dir constructs an empty directory for use with AddChild.

• Copy is akin to Fetch, but instead returns a literal copy of the tree in focus. This

tree cannot be destructed, and can thus only be used by AddChild to copy or move

a whole subtree.

We can derive several useful functions from these expressions as shown in Figure 6.6:
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Is_Folder ≜ (Fetch = Dir _)
Is_Root ≜ (Name = /)

Has_Child a ≜ match Fetch with
| Dir ℓ when a ∈ ℓ → true
| _ → false

Figure 6.6: ZFS Derived Expressions

• Is_Folder returns a boolean denoting whether the current node is a directory or

not.

• Is_Root returns a boolean denoting whether the current node is the root or not.

• Has_Child takes a name as input and returns a boolean denoting whether the

current node has a child with that name.

One important principle behind all of these commands and expressions is that they

only perform local queries and modifications of the zipper. They never require any

information that is not available at the focus node, nor do they change anything beyond

it. This can make each core command and expression a constant time operation.

6.2.3 Global Semantics

The global semantics works very similarly to the one in Chapter 5. We first show how

to construct a serial, global denotational semantics by lifting the command denotations

to bags of transactions, then we construct a concurrent global operational semantics.

Finally, we relate the two, proving that ZFS provides serializable transactions.

Figure 6.7 introduces some additional syntax defining what precisely constitutes a

transaction. We define the global denotational semantics on a transaction (JKG) and a

transaction list (JKG) respectively as follows:

J(((E , _), c), _)KG Z ≜ project_zipper (JcKZc (E ,Z ))

JℓKG Z ≜ fold Z ℓ J·KG
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ts ∈ Timestamp Timestamps
GL ∈ TSLog Timestamped Logs
td ∈ Thread ≜ (Env × Zipper)× Command

TxS ∈ TxState ≜ Command × Timestamp × Log
t ∈ Transaction ≜ Thread × TxState
T ∈ Transaction Pool ≜ Transaction Bag

Figure 6.7: Global Semantics Additional Syntax

In the first case, we start with a transaction and take a zipper file system as input,

producing a new zipper using the denotation of that transaction’s command. In the

second, we simply lift this operation to act on a list of transactions in the obvious way.

This is a simple way to execute a bag of transactions (with some ordering) on a file

system, but it is inherently serial. We want programs to be able to run concurrently on

the file system, so this is unacceptable.

Instead, we introduce a global operational semantics that naturally captures all

possible interleavings of transactions. In order to produce such a semantics, we should

connect it to a local operational semantics that can run individual commands. There is a

simple trick that we can use. For the IMP commands, a standard operational semantics

will do. For the ZFS commands, we can use the denotational semantics to execute a

single step as follows:

((E ′, z ′), σ) = JzcKZc (E , z )

⟨E , z , zc⟩ σ−→L ⟨E ′, z ′, Skip⟩

This is quite easy to motivate given that all ZFS commands are immediate local

modifications and thus inexpensive to consider atomic.

We can now use this local operational semantics to construct a global semantics

as seen in Figure 6.8. The global semantics uses three rules to step between two

contexts. A context is a tuple of a global file system zipper Z , a global log GL, and

a transaction poolT . Intuitively, the global zipper represents the true state of the file

system, while each transaction has its own, isolated, local view. The global log records
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⟨td⟩ σ′
−→L ⟨td ′⟩

⟨Z ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨Z ,GL, {(td ′, (cs , ts , σ · σ′))} ⊎ T ⟩

is_Done? td check_log GL σ ts
Z ′ = merge Z σ GL′ = GL · (add_ts fresh_ts σ)

⟨Z ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨Z ′,GL′,T ⟩

is_Done? td ¬(check_log GL σ ts)
ts ′ = fresh_ts td ′ = (({},Z ), cs)

⟨Z ,GL, {(td , (cs , ts , σ))} ⊎ T ⟩ →G ⟨Z ,GL, {(td ′, (cs , ts ′, []))} ⊎ T ⟩

Figure 6.8: Global Operational Semantics

all writes made by committed transactions. The transaction pool contains all currently

running transactions. The three rules work as follows:

1. Any transaction in the transaction pool can take a single step in the local semantics,

appending the resulting log to its own.

2. If a transaction is finished and does not conflict with previously committed trans-

actions (captured by check_log), it can commit. These conflicts occur when a

transaction reads stale data. When a transaction commits, it updates the global

zipper according to any writes that it has performed (captured by merge) and

leaves the transaction pool.

3. If a transaction is finished, but conflicts with a previously committed transaction,

then it cannot commit and must restart. The transaction gets a fresh timestamp,

resets its log and environment, and reruns its original command, cs.

Taken together, these rules allow the arbitrary interleaving of transactions, with the

ability to roll-back if any issues arise, as is typical of optimistic concurrency control. Using

the global denotational and operational semantics, we can now state the serializability

theorem. The proof of this theorem is a straightforward modification to the proof

Appendix B. The theorem follows:

124



Theorem 6.2.1 (Serializability). Let Z ,Z ′ be file systems, GL,GL′ be global logs, and T a

transaction pool such that ∀t ∈ T . initial Z t , then:

⟨Z ,GL,T ⟩ →∗
G ⟨Z ′,GL′, {}⟩ =⇒ ∃ℓ ∈ Perm(T ). JℓKG Z = Z ′

where →∗
G is the reflexive, transitive closure of →G.

With this, we have fully characterized the syntax and semantics of ZFS, both within

transactions (locally) and between transactions (globally). However, ZFS does not have

a standard file system interface and, much like in our previous work, we prefer to meet

users where they are rather than require them to rewrite all of their applications. As

such, we wish to provide a translation from POSIX down to ZFS, effectively allowing

users to get serializable transactions for POSIX.

6.3 POSIX Encoding

This section presents a formalization of POSIX and a translation from this formalization

into ZFS. Note that this translation has not yet been proven correct.

6.3.1 Syntax

We present the syntax of POSIX in Figure 6.9 and use the preliminaries from the previous

section (Figure 6.1).

• A file system node t is either a directory containing the names of its children

(Dir {a}) or a file containing a string (File u).

• Paths and path elements look identical to those of ZFS.

• The file system fs is a partial map from paths to file system nodes. A well-formed

file system has three additional properties:
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File System Nodes t ::= Dir {a} | File u
Paths p ::= / | . | p/pe
Path Elements pe ::= a | ..
File System fs : Path ⇀ Node
File Descriptors fd ∈ FD

Commands c ::= x := pc | Skip | c1; c2 | x := e
| If b Then c1 Else c2 | While b Do c

POSIX Commands pc ::= open e | close e | remove e | copy e1 e2
| mkdir e | chdir e

Expressions e, b ::= pf | v | x | e1 e2 | . . .
Values v ::= fd | p | s | true | false | . . .
POSIX Functions pf ::= write e1 e2 | read e1 e2 | seek e1 e2

POSIX Statuses s ::= SUCCESS | EBADF | EISDIR | ENOTDIR
| ENOTEMPTY | EEXIST | ENOENT

Figure 6.9: POSIX Syntax

Definition 6.3.1 (Well-Formedness). A file system fs is well-formed if and only if:

1. fs(/) = Dir _

2. p/a ∈ fs ⇐⇒ fs(p) = Dir ℓ ∧ a ∈ ℓ

3. p ∈ fs =⇒ ¬(.. ∈ p ∨ . ∈ p)

The first two restrictions assert that file systems are trees rather than arbitrary

partial maps. The last excludes relative paths and those containing the special

parent symbol (..) from being mapped. For the remainder of this chapter, we only

consider well-formed file systems.

• File descriptors fd are effectively abstract unique identifiers. For example, in a

typical POSIX implementation, file descriptors are simply integers. In this formaliza-

tion, they identify (i.e. point to in the file descriptor map) a path, its representation,

and the offset from which reads and writes will proceed.
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• Commands c are made up of the standard IMP commands and x := pc, which runs

a POSIX Command pc and stores its result in a variable x . The POSIX commands

are a subset of those in the POSIX standard [24]:

1. The open command takes a path and creates a file descriptor from it, possibly

creating a file if none exist.

2. The close command takes an open file descriptor and closes it, potentially

updating the file system based on changes made.

3. The remove command takes the path of an empty directory or a file and

removes it from the file system.

4. The copy command takes the path of a subtree to be copied and an unmapped

path to which the subtree is copied.

5. The mkdir command takes an unmapped path and creates a directory there.

6. The chdir command takes a path to a directory and makes that the new

working path.

• Expressions e and Values v are standard, with the exception of the POSIX functions.

These are write, read, and seek:

1. The write function takes an open file descriptor and a string as its arguments

and writes the string to the offset and file specified in the file descriptor.

2. The read function takes an open file descriptor and an integer n and reads n

characters/entries from the file/directory in the file descriptor at the specified

offset.

3. The seek function takes an open file descriptor and an integer n and sets the

file descriptors offset to n.
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• The POSIX Statuses s are a subset of those in the POSIX standard. They indicate

the type of error encountered or, in the case of SUCCESS, success. In standard POSIX

implementations, statuses are represented by integers.

With that, we can move on to the formal semantics of the commands and functions.

6.3.2 Semantics

This subsection introduces the semantics of POSIX Commands and Functions. We elide

the IMP commands, since they are standard. The semantics is split into successful

operation and errors. We present each in turn.

Figure 6.10 contains the denotational semantics of the POSIX commands. The

denotation of a POSIX command in a context is a pair of a value and a new context. The

x := pc command thus runs a POSIX command pc, assigns the returned value to x , and

updates the state of the world to the returned context.

A context consists of an environment E , the current working path wp, a map of

open file descriptors FD, and a file system fs. The file descriptor map FD maps open file

descriptors to a tuple of the path that they point to, a buffered value, and an offset. The

buffered value is read and written at the offset until finally being persisted back to the

file system when the file descriptor is closed.

The denotation of expressions J·KPe , also takes a full context as input, but outputs a

pair of the expression’s return value and a possibly updated file descriptor map. The file

descriptor map is the only part of a context that an expression can modify.

The six POSIX commands in Figure 6.10 work as follows:

• The open command evaluates its argument to a path, which it then canonicalizes

by combining it with the current working path. If the canonical path is mapped in

the file system, then open generates a fresh file descriptor and maps the path, its

contents, and the starting offset (0) to it.
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(p ′, FD1) = JeKPe (E ,wp, FD, fs) p = canonicalize wp p ′

p ∈ fs fd = fresh FD1 FD2 = FD1[fd 7→ (p, fs(p), 0)]

Jopen eKPpc (E ,wp, FD, fs) = (fd , (E ,wp, FD2, fs))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) p/a = canonicalize wp p ′ fs(p) = Dir ℓ
a /∈ ℓ fd = fresh FD1 FD2 = FD1[fd 7→ (p/a,File ε, 0)]

fs1 = fs [p 7→ Dir ℓ ∪ {a}] fs2 = fs1[p/a 7→ File ε]

Jopen eKPpc (E ,wp, FD, fs) = (fd , (E ,wp, FD2, fs2))

(fd , FD1) = JeKPe (E ,wp, FD, fs) FD1(fd) = (p,File u, _)
fs(p) = File _ FD2 = FD1[fd 7→ ⊥] fs1 = fs [p 7→ File u]

Jclose eKPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp, FD2, fs1))

(fd , FD1) = JeKPe (E ,wp, FD, fs) FD1(fd) = (p, t , _)
(t = Dir _) ∨ (fs(p) ̸= File _) FD2 = FD1[fd 7→ ⊥]

Jclose eKPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp, FD2, fs))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) p/a = canonicalize wp p ′

fs(p) = Dir ℓ (fs(p/a) = Dir ∅) ∨ (fs(p/a) = File _)
fs1 = fs [p 7→ Dir ℓ \ {a}] fs2 = fs1[p/a 7→ ⊥]

Jremove eKPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp, FD1, fs2))

(p1, FD1) = Je1KPe (E ,wp, FD, fs) (p2, FD2) = Je2KPe (E ,wp, FD1, fs)
p ′ = canonicalize wp p1 p ′ ∈ fs

p/a = canonicalize wp p2 fs(p) = Dir ℓ a /∈ ℓ
fs1 = fs [p 7→ Dir ℓ ∪ {a}] fs2 = fs1[p/a 7→ fs(p ′)]

Jcopy e1 e2KPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp, FD2, fs2))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) p/a = canonicalize wp p ′ fs(p) = Dir ℓ
a /∈ ℓ fs1 = fs [p 7→ Dir ℓ ∪ {a}] fs2 = fs1[p/a 7→ Dir ∅]

Jmkdir eKPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp, FD1, fs2))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) wp ′ = canonicalize wp p ′ fs(wp ′) = Dir _
Jchdir eKPpc (E ,wp, FD, fs) = (SUCCESS, (E ,wp ′, FD1, fs))

Figure 6.10: POSIX Command Semantics
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If the canonical path is not mapped, but its parent is a directory, then open

constructs a new file at that path, updating the file system appropriately, and

generates a file descriptor containing an empty file.

Finally, open returns the generated file descriptor and a context with an updated

file descriptor map and possibly an updated file system.

• The close command evaluates its argument to an open file descriptor, from which

it gets a path and buffered tree. If the tree is a file and the path is mapped to a

file in the file system, then the path in the file system is updated to contain the

buffered value. If, instead, the path is unmapped in the file system or the tree is

a directory, then the file system remains unchanged. In either situation, the file

descriptor is unmapped and the new context is returned with a SUCCESS status.

• The remove command evaluates its argument to a path, which it then canonicalizes

by combining it with the current working path. It ensures that the canonical path

maps to a file or an empty directory in the file system, and removes the mapping

from the file system, while keeping it well-formed.

• The copy command evaluates its arguments to two paths, which it then canoni-

calizes. It ensures that the first path is mapped in the file system, that the second

path is not, and that the second path’s parent is a directory. The command then

maps the second path to the contents of the first, properly adding a new child to

the parent directory. Note that the combination of copy and remove can be used to

implement rename.

• The mkdir command evaluates its argument to a path, which it then canonicalizes

by combining it with the current working path. It ensures that the canonical path

is unmapped while its parent is a directory. Then it maps that path to an empty

directory while keeping the file system well-formed.
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(fd , FD1) = Je1KPe (E ,wp, FD, fs) (u ′, FD2) = Je2KPe (E ,wp, FD1, fs)
FD2(fd) = (p,File u, n) u ′′ = substitute_at u n u ′

n ′ = n + length u ′ FD3 = FD2[fd 7→ (p,File u ′′, n ′)]

Jwrite e1 e2KPe (E ,wp, FD, fs) = (SUCCESS, FD3)

(fd , FD1) = Je1KPe (E ,wp, FD, fs) (n ′, FD2) = Je2KPe (E ,wp, FD1, fs)
FD2(fd) = (p,File u, n)

n ′′ = min (length u) (n + n ′) FD3 = FD2[fd 7→ (p,File u, n ′′)]

Jread e1 e2KPe (E ,wp, FD, fs) = (u[n :n ′′], FD3)

(fd , FD1) = Je1KPe (E ,wp, FD, fs) (n ′, FD2) = Je2KPe (E ,wp, FD1, fs)
FD2(fd) = (p,Dir ℓ, n)

n ′′ = min (length ℓ) (n + n ′) FD3 = FD2[fd 7→ (p,Dir ℓ, n ′′)]

Jread e1 e2KPe (E ,wp, FD, fs) = (ℓ[n :n ′′], FD3)

(fd , FD1) = Je1KPe (E ,wp, FD, fs) (n, FD2) = Je2KPe (E ,wp, FD1, fs)
FD2(fd) = (p, t , _) FD3 = FD2[fd 7→ (p, t , n)]

Jseek e1 e2KPe (E ,wp, FD, fs) = (SUCCESS, FD3)

Figure 6.11: POSIX Function Semantics

• The chdir command evaluates its argument to a path, which it then canonicalizes

by combining it with the current working path. It ensures that the canonical path

maps to a directory in the file system, and updates the working path to point to it.

Figure 6.11 defines the semantics of the POSIX functions, write, read, and seek. They

work as follows:

• The write function evaluates its arguments to an open file descriptor, which

contains a file, and a string. It then writes the input string to the string contained

in the file, starting at offset n, using the substitute_at function. It appropriately

updates the open file descriptor and returns SUCCESS.

• The read function evaluates its arguments to an open file descriptor and an integer.

The input integer n ′ determines the max number of characters or directory entries

to be read. Starting from the offset in the file descriptor, at most n ′ characters or

entries are returned and the file descriptor is modified accordingly.
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X ∈ {open e, remove e, copy e _, copy _ e, mkdir e, chdir e}
(p ′, FD1) = JeKPe (E ,wp, FD, fs) p/ . . . /pe = canonicalize wp p ′ p /∈ fs

JXKPpc (E ,wp, FD, fs) = (ENOENT, (E ,wp, FD1, fs))

X ∈ {open e, remove e, copy e _, copy _ e, mkdir e, chdir e}
(p ′, FD1) = JeKPe (E ,wp, FD, fs) p/ . . . /pe = canonicalize wp p ′ fs(p) = File u

JXKPpc (E ,wp, FD, fs) = (ENOTDIR, (E ,wp, FD1, fs))

X ∈ {remove e, copy e _, chdir e}
(p ′, FD1) = JeKPe (E ,wp, FD, fs) p = canonicalize wp p ′ p /∈ fs

JXKPpc (E ,wp, FD, fs) = (ENOENT, (E ,wp, FD1, fs))

(fd , FD1) = JeKPe (E ,wp, FD, fs) fd /∈ FD1

Jclose eKPpc (E ,wp, FD, fs) = (EBADF, (E ,wp, FD1, fs))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) p = canonicalize wp p ′ fs(p) = Dir ℓ ∧ ℓ ̸= ∅
Jremove eKPpc (E ,wp, FD, fs) = (ENOTEMPTY, (E ,wp, FD1, fs))

X ∈ {copy _ e, mkdir e}
(p ′, FD1) = JeKPe (E ,wp, FD, fs) p = canonicalize wp p ′ p ∈ fs

JXKPpc (E ,wp, FD, fs) = (EEXIST, (E ,wp, FD1, fs))

(p ′, FD1) = JeKPe (E ,wp, FD, fs) p = canonicalize wp p ′ fs(p) = File u

Jchdir eKPpc (E ,wp, FD, fs) = (ENOTDIR, (E ,wp, FD1, fs))

X ∈ {write e1 e2, read e1 e2, seek e1 e2}
(fd , FD1) = Je1KPe (E ,wp, FD, fs) fd /∈ FD1

JXKPe (E ,wp, FD, fs) = (EBADF, FD1)

(fd , FD1) = Je1KPe (E ,wp, FD, fs) FD1(fd) = (p,Dir ℓ, _)
Jwrite e1 e2KPe (E ,wp, FD, fs) = (EISDIR, FD1)

Figure 6.12: POSIX Command and Function Error Semantics

• The seek function evaluates its arguments to an open file descriptor and an integer.

The input integer is set as the new offset for the file descriptor.

Figure 6.12 defines the conditions in which commands and functions cause POSIX errors:

• All commands except close share the need for a valid path. If some strict prefix
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of their input path is unmapped in the file system or maps to a file, then they will

return ENOENT or ENOTDIR respectively.

• The remove, copy, and chdir commands additionally require that their input path

(rather than just all strict prefixes) must be mapped in the file system. Otherwise

they return ENOENT. For copy, this is only true of its first argument.

• The close command is the only one that takes a file descriptor as input. If that

file descriptor is not open (i.e. mapped in the file descriptor map), then it returns

EBADF.

• The remove command has additional constraints on its mapped input path. In

particular, it cannot remove non-empty directories. If the path is a non-empty

directory, remove returns ENOTEMPTY.

• The copy and mkdir command both require an input path that is not mapped in

the file system. If it is mapped, they return EEXIST. For copy, this is only true of its

second argument.

• The chdir command accepts only paths that point to directories. If it gets a path

pointing to a file, then instead it returns ENOTDIR.

• All functions require their first argument to be an open file descriptor. If it is not,

then they return EBADF.

• The write function further requires that the open file descriptor does not point to

a directory. Otherwise, it returns EISDIR.

Unlike the success rules, the failure rules are non-deterministic. So multiple error

conditions could hold at the same time. As such, a natural question is whether there

should be a precedence order for delivery. In the POSIX specification, no such ordering

exists and thus I have not defined one here, but it would be straightforward to choose

a precedence or make the rules non-overlapping. Every implementation I have seen
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evaluates paths one entry at a time, and the first error reported would thus simply be

the first error condition encountered.

That concludes the subsection on POSIX semantics. We can now define a translation

from the POSIX semantics to the ZFS semantics, allowing us to run POSIX on top of ZFS

to get serializability guarantees.

6.3.3 Translation Semantics

This subsection defines a translation from POSIX to ZFS. This translation lets pro-

grams use a (subset of a) standard POSIX API, while gaining the benefits of ZFS’s

concurrency guarantees.

Figure 6.13 defines how expressions are translated from POSIX to ZFS. An expression

in POSIX is translated to a pair of a ZFS command and a ZFS expression. Intuitively,

because expressions in POSIX can change the state of the file descriptor map, which we

represent as a special variable in ZFS, they must at least use assignments in order to be

properly translated.

In the translation, the file descriptor map is denoted $posix_fds. All variables

starting with $ are fresh (except for $posix_fds and $RET ) and not available to users.

$RET is a designated variable that captures the return values of commands. The return

value of a translated POSIX expression is captured by the ZFS expression. In the figures,

meta-variables are typeset in boldface. For example, fd is a meta-file descriptor, which

represents an actual file descriptor variable. No meta-variables remain after a full

translation.

In Figure 6.13, the application expression gives a flavor of how these translations

would look for standard expressions. The POSIX functions are translated using an

auxiliary function (check_fd_do) defined in Figure 6.16. The auxiliary function translates

and evaluates the first expression, checks that the resulting file descriptor is open, and
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L·Me : PExp → (ZFSCommand × ZFSExp)
L·Mpf : PFun → (ZFSCommand × ZFSExp)

Le1 e2Me ≜
(c3, e3) = Le2Me
(c4, e4) = Le1Me
(c3; $x := e3; c4, e4 $x )

Lwrite e1 e2Mpf ≜ (check_fd_do e1 (write e2),$RET)
Lread e1 e2Mpf ≜ (check_fd_do e1 (read e2) ,$RET)
Lseek e1 e2Mpf ≜ (check_fd_do e1 (seek e2) ,$RET)

write e fd ≜
(c1, e1) = LeMe
($p, $t , $n) := $posix_fds(fd);
If $t = Dir _
Then $RET := EISDIR
Else c1; $u

′ := e1;
File $u := $t ;
$u ′′ := substitute_at $u $n $u ′;
$n ′ := $n + length $u ′;
$posix_fds(fd) := ($p,File $u ′′, $n ′)
$RET := SUCCESS

read e fd ≜
(c1, e1) = LeMe
($p, $t , $n) := $posix_fds(fd);
c1; $n

′ := e1;
($contents, $RET ) := match $t with
| File $u when $n ′′ = min (length $u) ($n + $n ′) → (($p, $t , $n ′′), $u[$n :$n ′′])
| Dir $ℓ when $n ′′ = min (length $ℓ) ($n + $n ′) → (($p, $t , $n ′′), $ℓ[$n :$n ′′])
| _ → ($posix_fds(fd), ENOENT)
$posix_fds(fd) := $contents

seek e fd ≜
(c1, e1) = LeMe
($p, $t , _) := $posix_fds(fd);
c1; $n := e1;
$posix_fds(fd) := ($p, $t , $n);
$RET := SUCCESS

Figure 6.13: POSIX Function Translation into ZFS. All variables starting with $ are
unavailable for use by users. They are also all fresh except for $posix_fds, which is a
designated variable for the File Descriptor map. $RET is a designated variable for the
return value of the function.
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L·Mpc : PCommand → Command

Lx := pcMc ≜ LpcMpc; x := $RET

Lclose eMpc ≜ check_fd_do e close

close_local a u ≜
If Has_Child a
Then GotoChild a;

If ¬Is_Folder
Then Update_File u
Else Skip

Else Skip

close fd ≜
($p/$a, $t , $n) := $posix_fds(fd);
$posix_fds(fd) := ⊥;
If $t = File $u
Then check_do_return $p (close_local $a $u)
Else Skip;
$RET := SUCCESS

Lopen eMpc ≜
(c1, e1) = LeMe
c1; $p/$a := canonicalize e1;
check_do_return $p (open $p/$a)

open p/a ≜
If Is_Folder
Then If Has_Child a

Then GotoChild a;
$t := Fetch
Up

Else AddChild a Construct_File;
$t := File ε

$fd := fresh $posix_fds;
$posix_fds($fd) := (p/a, $t , 0)
$RET := $fd

Else $RET := ENOTDIR

Figure 6.14: POSIX Command Translation into ZFS (1). All variables starting with $ are
unavailable for use by users. $RET is a designated variable for the return value of the
function.

passes it to the meta-function that is its second argument.

Each of write, read, and seek, given this file descriptor and the second argument

of their namesakes as input, combine the success and error semantics of POSIX given

above and execute it in ZFS.

Figures 6.14 and 6.15 capture the translations of POSIX commands, as well as the

sole interesting non-POSIX command. The IMP commands have the standard translation.

Many commands use check_do_return as a sub-routine, which effectively captures

the first two rules of Figure 6.12 and gets the ZFS zipper to where it needs to make

changes. The command passed in as the second argument of check_do_return actually

performs most of the details of open, close, remove, copy, and mkdir. After executing its
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Lmkdir eMpc ≜
(c1, e1) = LeMe
c1; $p/$a := canonicalize e1;
$t := Construct_Dir
check_do_return $p (mknode $a $t)

mknode a t ≜
If Is_Folder
Then If Has_Child a

Then $RET := EEXIST
Else AddChild a t;

$RET := SUCCESS
Else $RET := ENOTDIR

Lcopy e1 e2Mpc ≜
(c3, e3) = Le1Me
(c4, e4) = Le2Me
c3; $p

′ := canonicalize e3;
$RET := SUCCESS;
check_do_return $p ′ ($t := Copy);
If $RET = SUCCESS
Then c4; $p/$a := canonicalize e4;

check_do_return $p (mknode $a $t);
Else Skip

Lremove eMpc ≜
(c1, e1) = LeMe
c1; $p/$a := canonicalize e1;
check_do_return $p (remove $a)

remove a ≜
$RET := SUCCESS;
cdr_aux ($x := Fetch) [a]
If $RET = SUCCESS
Then If ($x = Dir ℓ) ∧ (ℓ ̸= ∅)

Then $RET := ENOTEMPTY
Else RemoveChild a

Else Skip

Lchdir eMpc ≜
(c1, e1) = LeMe
c1; $p := canonicalize e1;
$RET := SUCCESS;
check_do_return $p ($b := Is_Folder);
If $RET = SUCCESS
Then If $b

Then Goto $p
Else $RET := ENOTDIR

Else Skip

Figure 6.15: POSIX Command Translation into ZFS (2). All variables starting with $ are
unavailable for use by users. $RET is a designated variable for the return value of the
function.

input command, check_do_return returns back from whence it came, thus leaving the

working path of POSIX, which corresponds to the zipper’s position in the tree, unchanged.

For chdir, check_do_return is entirely used to check for errors, and it instead changes

the working path after check_do_return has returned.

This concludes both the subsection on the translation from POSIX to ZFS, and the

entire section on POSIX. Next, we will briefly describe the current implementation of

ZFS in OCaml.

137



cdr_aux c [] ≜ c
cdr_aux c (a · l) ≜
If Is_Folder
Then If Has_Child a

Then GoDoReturn a (cdr_aux c l)
Else $RET := ENOENT

Else $RET := ENOTDIR

check_do_return p c ≜
hd · l = listify_path p
GoDoReturn hd (cdr_aux c l)

check_fd_do e f ≜
(c1, e1) = LeMe
c1; $fd := e1;
If $fd /∈ $posix_fds
Then $RET := EBADF
Else f $fd

Figure 6.16: Helper functions for POSIX → ZFS Translation

6.4 Implementation

We have built a prototype implementation of ZFS in 1047 lines of OCaml. It implements

most of the functionality described in Section 6.2.

The current implementation uses an underlying POSIX file system and is available

only as an application, so all users would be required to run their programs through it

manually, which is tedious at best. However, a minor engineering effort would suffice

to set it up as an API; a moderate engineering effort would be required to implement a

FUSE version.

One of the most interesting features of the implementation is that the zipper is

functional, which allows us to employ copy-on-write semantics. Thus, moving or copying

a whole subtree using some combination of Copy, RemoveChild, and AddChild is effec-

tively instantaneous. Additionally, a copied subtree need not take any extra space until it

is changed in some way, and even then, only the tree changes need to be stored.
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6.5 Future Work

This section introduces some extensions to further improve ZFS, usually in terms of

theoretical improvements with practical consequences.

There are three near-term extensions that we have considered for the POSIX encod-

ing:

1. While we believe that the POSIX to ZFS translation that is presented in Section 6.3.3

is correct, we have not yet proven this fact. The goal would be to prove a bisimula-

tion relation.

2. We have presented a POSIX to ZFS translation, but it would also be useful to have

a ZFS to POSIX translation. Additionally, this should be significantly easier than

the direction we have gone. With such a translation, it would become possible to

run ZFS on top of a normal POSIX file system. This is particularly attractive since

one of the goals of this entire thesis is to meet programmers where they are. PADS,

Forest, iForest, and TxForest all work with data that is already there, while trying

to make it easier for users to correctly interface with this data. Requiring the user

to switch file systems departs from this mission. The proposed translation would

bring this work back in line with the rest of the thesis.

Additionally, if we proved such a translation correct, it would become easier to

verify the correctness of the implementation, whether informally or formally.

One could combine the two translations to run ZFS as a layer in between POSIX. In

theory, this would allow users to run their applications as is, while retaining the

serializability guarantee.

Finally, having both of these translations would imply that the two interfaces have

equal expressive power, which, while unsurprising, is an attractive notion.
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3. Finally, the POSIX encoding only captures some pieces of POSIX (though we and

others [15] would argue that they are the core pieces), so there is plenty of work

to be done in extending the encoding. Three obvious candidates for extension are:

(1) The many errors that we do not model; (2) the higher-level features that we do

not model, like permissions, file attributes, etc; and (3) the plethora of commands

that we do not model, many of which can simply be derived from those that we

do provide. Most of this work should be straightforward, though every addition

increases complexity.

For ZFS in general, there are also three key ideas that we have wanted to pursue:

1. One of the main reasons we embarked on this project was to solve issues that

we were having with TxForest. For example, we wanted to offer guarantees with

respect to arbitrary concurrent processes and we wanted to be able to reason

about the whole chain of semantics, doing away with informally specified file

systems. While ZFS supports this in theory, we still want to tightly integrate ZFS

and TxForest, both semantically and practically so that we can see the touted

benefits of this project.

2. Another key feature that we desire for ZFS is a Hoare-style logic for reasoning

about correctness. Eventually, we would want to lift this reasoning all the way up

to TxForest. There is a significant amount of work to be done to design such a logic,

but reasoning about the correctness of programs in transactional file systems (or

indeed, file systems in general), is an underexplored problem.

3. Finally, a significant advantage touted for domain-specific languages for ad hoc

data processing, is the ability to get a typed representation of a snippet of your file

system. Why not consider a typed file system? The reason that we left the data

contained in files abstract in ZFS was to consider precisely this idea. If files did not
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have to contain just strings, but instead could contain other typed data, it would

be straightforward to view the entire file system as one, large, typed tree.

With this view, it seems plausible that we could improve the correctness of the file

system interfacing code. A simple version would just allow (or require) users to

specify the expected type of the data they are requesting. A more complex version

could give types to entire traversals of the zipper and perhaps generate a very

simple check to see if we will encounter any type errors given the current state of

the file system. Due to ZFS’ isolation guarantees, the current state of the file system

will also be the state in which the program runs, unless it runs into a conflict, in

which case it could retry if it is still well-typed, and otherwise abort with some

message.

6.6 Conclusion

We have presented the Zipper File System (ZFS), a transactional file system with a novel

underlying abstraction and a formal semantics describing its behavior. This file system is

based on Kiselyov’s ZFS design [27]. The zipper abstraction closely captures the usage of

a file system, by neatly representing both the tree structure and the working path. It also

allows a new, functional view of a file system, which, we expect, can allow for a simple

and efficient implementation of the semantics.

We have designed a denotational semantics to describe the operation of ZFS, both

at the local and global level. Additionally, we have designed an operational global

semantics, which allows concurrent transactions, and proven that the semantics provides

serializable transactions. We have designed and formalized a semantics for POSIX and a

translation from POSIX to ZFS. In theory, this allows users to run their usual applications

that use a POSIX interface on top of ZFS, getting serializable transactions without any

additional work.
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Finally, we briefly touched on our prototype implementation of ZFS in OCaml. We

also described six ideas for potential extensions of different scope to both ZFS and the

POSIX semantics.
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Chapter 7

Related Work

This chapter summarizes research that is closely related to the work described in this

dissertation. I have split the related work into four categories: (1) Data processing

languages; (2) Transactional file system; (3) POSIX semantics; and (4) Zippers.

7.1 Data Processing Languages

This section covers the data processing languages PADS (Processing Ad hoc Data Sources),

Forest, Type Providers, and LINQ. Note that PADS and Forest have already been discussed

in Sections 2.2 and 2.3.

PADS (Processing Ad hoc Data Sources) is a domain-specific language for processing

ad hoc data. It differs from the Forest-derived work described in this dissertation largely

with its focus on single files rather than filestores. Section 2.2 gives a more detailed

description. The PADS line of work explored four branches of research, most of which

are discussed in [10]. These branches of inquiry, and their suggested solutions, should

also be applicable to the work in this dissertation:

Data Description Calculus. The first branch defined a calculus and semantics for data

description languages [9, 30]. The key idea is to enable a comparison between data

description languages—in the style of Landin’s seminal work The Next 700 Programming
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Languages [29]—by defining a higher-level language in which all the others can be

interpreted.

Generic Programming Toolkit. The second branch designed a generic programming

toolkit for PADS [6]. This toolkit allowed programmers to write tools for any PADS

description rather than being reliant on those tools that others have designed. The

statistical analysis tools as well as the XML and JSON translators, mentioned in various

chapters of this dissertation, are examples of such description-agnostic tools.

Learning. The third branch focused on lowering the barrier to entry for using PADS [11].

Given the complexity of some data formats described in this dissertation, it should be

unsurprising that writing declarative specifications for them can be difficult. This branch

of work lead to inference tools that generate specifications from ad hoc data without

programmer input. Rather than getting immediately usable specification, the authors

suggest that the greatest success of this branch lay in generating a prototype specification

that humans can more easily improve upon as compared to starting from scratch.

Forest. The last branch is Forest [7], which extended PADS to work on filestores

rather than only single files. Besides the practical benefits of providing specifications at

the filestore level, the main theoretical contributions of Forest were a semantics. The

semantics of Forest satisfied the round-tripping laws from the bidirectional programming

literature [12], assuring users that Forest updates filestores in a sensible manner.

Beyond the PADS line of work, to which this dissertation belongs, there are several

other language-based approaches to data processing. Standard parser generators, like

Yacc [26], provide facilities for parsing data, though they do not tend to allow data-

dependent parsing, nor are they as convenient and all-in-one as PADS.
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Type Providers. F# Type Providers [2] share with Forest the ability to provide typed

representations for external data sources. However, the Type Providers lack a formal

semantics and do not support all nested types (or specifications). Type Providers mostly

facilitate use of existing data formats or data with a schema, but they do offer some

support for creating type providers for custom data sources.

LINQ. C# LINQ [1] allows users to query data sources directly using a simple syntax.

However, LINQ only accommodates data sources that support the IEnumerable interface.

LINQ does not have a formal semantics and it cannot use declarative specifications of

filestores to provide parsers into typed representations of data.

7.2 Transactional File Systems

Work in transactional file systems stretches across several decades. Unlike ZFS, all other

transactional file systems that I am aware of lack a formal semantics and a full proof

of their guarantees. Note that there are no commonly-used transactional file systems.

Some examples of transactional file systems include:

PerDiS File System. PerDiS [14] is an early example of a transactional file system.

It uses an optimistic concurrency control scheme to provide serializable transactions.

Rather than abort any transaction, PerDiS attempts to automatically merge conflicting

transactions. Since this is not possible in general, the system will write both versions

to disk and notify users to resolve the issue. Given the throughput expectations that

we have of most file systems these days, particularly those that are likely to benefit

most from being transactional, involving the user in this way is unlikely to be a feasible

solution.
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Amino. The Amino file system [41] provides ACID semantics. In Amino, individual

system calls are transactional and applications can define blocks of systems calls that

should be grouped into a single transaction. Amino is backwards compatible with

standard POSIX applications, though, without additional changes, the applications can

only benefit from the fact that individual system calls are transactional.

Warp Transactional Filesystem. The Warp Transactional Filesystem [5] (WTF) is a

distributed file system that uses a fast, transactional key-value store in its backend to

provide serializable transactions. At a high-level, WTF only appends data to the disk,

removing references (stored in its transactional key-value store) to the data instead of

the data itself. When there are no references, the data can safely be garbage collected.

A file is composed of a list of such references, detailing where its different parts are

stored. Clever, automatic defragmentation and compaction, amortizes the costs of this

partitioning.

TxFS. TxFS [22] is a transactional file system that provides ACID semantics to its

transactions. It leverages existing journaling mechanisms in file systems to provide

these guarantees in user space. By leveraging well-studied and tested mechanisms, their

confidence in the correctness of their system is increased.

7.3 POSIX Semantics

While the specification for POSIX [24] remains informal, various projects have attempted

to specify or give semantics to subsets of POSIX:

SibylFS. SibylFS is an executable, formal model of the expected behavior of several

file systems, including POSIX [36]. It does not supply a readable semantics exactly,

but instead characterizes all allowable traces. SibylFS can be used as a test oracle for
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file system authors who want assurance that their file system conforms to the POSIX

specification.

Reasoning About POSIX. Gardner, Ntzik, and others’ work on reasoning about POSIX

file systems, starting with local reasoning [15] and culminating in Ntzik’s PhD disserta-

tion [35], provides an axiomatic semantics for a subset of the POSIX file system interface.

They use this semantics to design a variant of a separation logic to enable formal rea-

soning about file system applications. We were partially inspired by their choice of core

commands.

Executable Semantics of POSIX. Greenberg and Blatt design an operational semantics

for a POSIX shell called Smoosh [19]. They implement Smoosh and benchmark its

performance and conformance to the POSIX specification. In doing so, they manage to

find bugs in other shells, test suites, and in the POSIX specification. Given its focus on

the POSIX shell rather than a small subset of its file system interface, their semantics is

significantly more complex than ours.

7.4 Zippers

There is much work on zippers, though most of it is not relevant to how we apply them

in file systems. Kiselyov’s work on a zipper-based file system [27, 28], however, was our

main inspiration for using zippers. Kiselyov provides an implementation of his system,

which works similarly to ours, in Haskell. However, he does not provide a semantics for

either his ZFS, or POSIX, and thus provides no translation between them. Additionally,

his focus is on the use of delimited continuations to provide certain nice properties in his

prototype file system. Our system does not use continuations (though it could and it is a

perfectly reasonable choice).
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Other relevant work on zippers include:

Huet’s Zippers. The concept of zippers was first published by Huet [23]. Huet identifies

what we would now call a tree zipper, and he suggests that the zipper must have been

reinvented on numerous occasions due to the simplicity and elegance of the idea. The

key goal of his work, beyond elucidating the elegance and simplicity of the structure, was

to enable tree updates without relying on destructive mutation or requiring logarithmic

complexity for each update.

McBride’s Derivatives. Finally, because it is some of the coolest work I have ever seen,

I would be remiss if I do not mention McBride’s work on the correspondence between

zippers and the structure that they capture [31]. In particular, he identifies the fact that

the standard derivative operation from calculus (e.g. if y = x2 then dy
dx

= 2x), if applied

to a regular type, produces the type of the focus for a zippered version of that type. This

blew my mind.
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Chapter 8

Conclusion

In this dissertation, I tackle problems that arise in processing the vast amounts of ad hoc

data in the world. I have designed two declarative, domain-specific languages for ad

hoc data processing, focusing on the systems surrounding them and formalizations that

ensure the properties that we desire. Additionally, to resolve concurrency issues that

were unavoidable in such systems, I designed a transactional file system with a formal

semantics and provably serializable transactions.

Incremental Forest. Chapter 3 introduced Incremental Forest (iForest), an extension

of Forest with a delay construct. This construct allows users to selectively process data in

their file system rather than loading or storing it all at once. The delay construct causes

a series of ripple effects in the full design leading to, for example, a tree transformation

language that we call skins. We also formalized a cost model to help users quantify the

advantages of using delays in different situations. With this cost model, we proved that

users would never suffer higher costs from introducing more delays.

Transactional Forest. Taking the idea of delays to their extreme, Chapter 5 introduced

Transactional Forest (TxForest). This work redesigned the programming model of Forest

by using a zipper as its underlying data structure and designing an API around this zipper.

The zipper is closely related to the maximally delayed structure from iForest, ensuring
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that users will incur minimal cost for their desired application. This zipper structure

additionally lends itself to a simple logging scheme, allowing us to design and formalize

a transaction manager with provably serializable transactions among TxForest processes.

Zipper File System. Unfortunately, it proved impossible to supply concurrency guar-

antees among arbitrary processes in a POSIX file system. Rather than use an existing

transactional file system, all of which lack a strong formal semantics, Chapter 6 intro-

duced a newly-designed file system based on the concept of zippers (similar to Kiselyov’s

ZFS [27]). The zipper concept lends itself to file systems, and its functional structure

provides nice theoretical properties. We designed a formal semantics for the Zipper File

System (ZFS) and proved that the semantics guarantees serializable transactions among

arbitrary concurrent users. We additionally designed a formal semantics for a subset of

POSIX. This semantics closely matches POSIX’s informal specification, and we proved

that POSIX could be implemented on top of ZFS. This allows standard applications

written with a POSIX API to benefit from ZFS’s transaction semantics.

8.1 Limitations

There are several limitations of the work in this dissertation. Most lie in the work’s

practical benefits, which I will touch on first: The project needs adoption, the imple-

mentation needs additional work, the programming model needs to be evaluated by

real users, and the specifications can be exceedingly complex. There are also several

theoretical limitations, including trade-offs in the semantics of storing, an inability to

update comprehensions directly, and the partiality of the TxForest semantics.

I believe that what has been accomplished work could benefit many people, particu-

larly computational scientists. But four issues need to be addressed:

• Implementation. The prototypes require significant engineering to become usable.
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• Adoption. Aside from a project’s use as a guideline to future projects, the utility

of any project is limited by its adoption by its target community. There is a need

for marketing, since one cannot use what one does not know about. There is also

a need to design a self-sustainable ecosystem around TxForest. Finally, I believe

that the use of OCaml as a host language is detrimental to TxForest’s adoption.

To combat this issue, we now have a prototype implementation of TxForest for

Python.

• User-friendliness. We have little evidence that our core programming model

is accessible its intended users. The TxForest model, where users traverse a

specification zipper, is quite different from previous versions of Forest and may

be more challenging to use. We need users and user studies both, to determine

whether a redesign is necessary and how such a redesign should look.

• Complexity of Specifications. The key benefits of our work rely on users writing

specifications for their data formats. Unfortunately, these specifications can be

tedious and difficult to write, particularly for more-complex data formats. The fact

that they are reusable allows the cost to be amortized by sharing specifications,

though this sharing would require an ecosystem of users to be a proper solution.

As seen in the Related Work chapter, PADS offers a solution based on automatically

inferring specifications from data, but significant research is required to generate

truly usable specifications in most situations.

There are also several theoretical limitations of my work:

• Updating Comprehensions. It would be nice to be able to add and remove el-

ements directly to/from comprehensions in TxForest. Such an interface would

be a more natural way of interacting with comprehensions than our current so-

lution of manually adding or removing files in the correct place elsewhere in the

specification. Unfortunately, since expressions are unrestricted, it is impossible

151



to reverse-engineer comprehension expressions in general. Therefore, we cannot

determine how a modified comprehension should be represented in the file system.

Currently, Forest, iForest, and TxForest side-step this issue by making expressions

unable to directly query the file system. Instead, comprehensions depend on other

directory specifications. We can hide this detail from the user by using heuristics

to modify the file system and dependency checks to ensure correctness before

persisting changes. But for full control, the user would have to change the directory

manually. This is currently unavoidable, but dissatisfying.

• Total TxForest. The semantics of TxForest are partial, which means it is possible to

get stuck by using the wrong command at the wrong time. As in many languages,

this problem could be avoided by introducing a type system. However, several

commands in TxForest depend on the state of the file system (e.g. Down and thus

Next and Prev), which is, by its nature, not statically known. We chose to keep the

commands simple and accept the partial semantics as is. Another option would

be to design a semantics that could never block due to dynamic properties. For

example, one could change Down to Down_Or and have it take another command as

input. It would then go down if possible and execute its input command otherwise.

This change would also allow a sound type system for TxForest.

• Loading/Storing Dependencies. We made a trade-off in the semantics of iForest

and TxForest regarding how to load and store dependencies. In Forest, loading and

storing dependencies is straightforward, since these functions are performed at

the granularity of a filestore. In iForest, storing is especially complex. For loading,

we chose to automatically force anything that the requested specification relied

on. Another option is to fail if users had not loaded that specification beforehand.

Additionally, we chose not to cache loaded dependencies to minimize memory

usage. However, that means that such dependencies may be reloaded multiple
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times. Perhaps the best trade-off, in hindsight, would be to have a special cache for

the dependencies and to drop them first if more memory is required. This would

require significantly more engineering effort.

In TxForest, we dealt with dependencies by encapsulating them as a zipper in

a context. We introduced a run construct that is specifically used to execute

commands and expressions on these contexts. We like this solution because, as

in the rest of TxForest, users must be explicit about what data they load in their

dependencies. However, for storing, users are required to manually traverse the

zipper and ensure that any changes they make propagate to produce a consistent

filestore. There are facilities to check the consistency of the current filestore,

which can help in this endeavor, but the manual process of explicitly storing every

dependency is tedious at best. On the other hand, there are no unsound heuristics

used, so it is a theoretically elegant solution.

8.2 Future Work

This section presents opportunities for future work that I encourage others (and myself!)

to consider. I have marked projects that I think would be useful in Practice, Research

related, or both with P, R, or P+R respectively.

• TxForest Implementation Improvements - P. An improved implementation is

critical for usability, but unlikely to lead to new research results. Beyond general

improvements like bug fixes, documentation, and additional library features, there

are two more significant and directed projects that I have in mind:

1. Generic Tool Framework - P. Many versions of PADS, as well as the initial

version of Forest, had a generic tool-building framework that allowed users

to construct specification-agnostic tools. Designing and implementing such a
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framework for TxForest is integral for a vibrant ecosystem and wide adoption.

I believe that this should not be as difficult as in previous versions due to the

zipper structure.

2. Practical Interfaces for TxForest - P. The standard interface for TxForest, as

seen in the semantics in Chapter 5, is low level and difficult to write programs

against, barring innumerable comments. However, it is a nice core language

upon which to build more usable, derived interfaces.

We have built an interface that tries to match the surface level specifications

rather than the core specifications. As a refresher here is an example of both

from Section 5.3.1:
surface = directory {

max is "max" :: file;
students is [s :: students | s <- matches RE "[a-z]+[0-9]+"]

}

core = ⟨max:"max":: File, ⟨dir:Dir , [s :: students | s ∈ e]⟩⟩
where e = filter (Run Fetch_Dir dir) "[a-z]+[0-9]+"

We would prefer to allow users to interact with their specification zipper

as though it encapsulated the surface specification directly, rather than just

the compiled core specification. Unfortunately, while this interface normally

"does the right thing," it currently uses a number of unsound heuristics. We

additionally supply several higher-level functions, like map and fold, that can

interact with arbitrary zippers.

However, there is much to be done and any work in his direction would likely

be a good first step on the road to a generic tool framework. Beyond a sound

surface interface, we would ideally have a wealth of use cases to draw from

to determine what higher-level functions are most critical.

• TxForest Users - P+R. Improvements to the implementation of TxForest will

benefit usability. However, significant work is required to design a system like
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TxForest that its target audience (e.g. computational scientists) will have an easy

time using. There are three main thrusts I would like to see explored in this vein:

1. Case Studies - P+R. While we have attempted some case studies, like the

SWAT study in Chapter 3, we could use many more to guide our work into

a usable state. In particular, I would love to see longitudinal case studies in

which the targeted group uses the tool, we capture their experiences, and

then they continue using the tool and we check back.

2. User Studies - P+R. This leads us to user studies in general. While we have

confidence in the expressiveness of our tool and language, its usability is

largely unexplored. Conducting user studies to evaluate how easy various

aspects of our system are to use and learn would help us achieve a balance

between usability and elegant, parsimonious semantics.

3. Ecosystem - P. The ecosystem of a language is made up of its user community

and the plethora of libraries, documentation, and developer tools that they

create and share amongst themselves. Building an ecosystem is onerous and

has no guarantee of success. However, there is nothing like having a significant

user base to find the issues. Furthermore, specifications are reusable, as are

generic tools. The complexity of designing these is more easily justified if they

have higher value due to reaching a greater set of people.

• Automated Specification Learning - P+R. One nice option to mitigate the issue

of specification complexity has been partially explored for both PADS [11] and

Forest [7]: automate some of the specification learning process. We would not

expect to be able to do this perfectly, but generating a strong starting point for

users should already significantly reduce the barrier to entry. I would like this

specification inference tool to be an integrated procedure that can construct specifi-
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cations at the level of PADS and Forest and combine them properly. These days, I

would expect that we could achieve remarkable results through Machine Learning.

• Restricted Expression Language - P+R. Earlier, I mentioned the difficulties of

correctly updating comprehensions (i.e. supplying formally specified add/remove

element commands for comprehensions). I have additionally mentioned the diffi-

culties of storing with dependencies in general.

The core decision from which both of these symptoms arise is the expressiveness

of our expression language. It is convenient to allow arbitrary expressions from

our host language, since now users can write code that is familiar to them. On

the other hand, it makes it formally impossible to properly analyze due to Turing

completeness. If we could instead construct a restricted expression language

that admitted a finite analysis, we would be able to design a nice semantics for

comprehension updates and allow store commands that properly propagate updates

to the entire filestore to ensure that it remains consistent.

There are several properties that we would like such a restricted language to have,

beyond admitting easier reasoning: (1) It should be able to represent all filestores

that we are aware of and can imagine users needing; (2) it should disallow file

system-related side effects; and (3) it should be easy to use, ideally resembling a

fairly standard programming language.

• TxForest Type System - P+R. As mentioned in the Limitations section, the seman-

tics of TxForest has a partiality problem. While this is true of the semantics of most

programming languages, I believe that this causes particular difficulty in TxForest

because of the low-level interface. In other languages, partiality is usually resolved

with a sound type system, ensuring that well-typed programs do not get stuck. I

believe that a type system is an excellent solution to this problem in TxForest as

well, with one key caveat:
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In practice, the type systems of other languages tend to ignore file system oper-

ations, instead relying on exceptions or the file system interface’s built-in error

codes. This is because the file system is an inherently dynamic object that is not

statically available during code compilation.

In TxForest, every interesting command and expression relates to the file system.

So how might we reconcile the dynamic nature of the file system with our desire

for well-typed code? I believe that there are two plausible, mutually compatible,

approaches that should both be explored:

The first is a fairly minor redesign of the semantics, which we discovered as we

were starting to design a type system: Every operation that requires the file system

to have particular properties can be modified to take another operation as input.

This operation would be executed if the file system does not have the expected

property. For example, consider the Down command. This command requires the

current file system node to be a directory with at least one child. We could instead

design a command Down_Or c, which works the same as Down except when the

current file system node is not a directory with at least one child. In this case, it

executes c instead. With such a modification, along with similar changes to the

other operations, we could design a sound type system for TxForest, which could

ensure that no well-typed program ever gets stuck, independent of the file system.

However, this is not a completely practical solution, since users often want to know

that their filestore conforms to its specification. If users just input operations that

throw errors as the alternative, then there is little practical benefit to this semantics

change. Additionally, users often have implicit beliefs about their filestore, which

they have not bothered specifying, such as the minimum number of elements in a

comprehension. This is where the second approach helps.

It is easy to construct a simple function or script that checks whether a particular
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path in a file system corresponds to a specification. It is more difficult to construct a

script that ensures that the path corresponds to the user’s implicit beliefs. However,

we can infer some of these beliefs from how they interface with the zipper. It

should be straightforward to get a sort of dual of our type system, which, instead

of providing soundness at the cost of a changed semantics, determines what the

targeted subtree of the file system must look like for the program to be correct.

Importantly, such a system should easily be able to produce a minimal set of

requirements, which may be significantly cheaper to check than, nor be implied

by, full specification conformance. We could then generate a script that, given a

path, checks whether it has the minimally required shape for the program to run

correctly.

• Logic - P+R. As mentioned in the ZFS chapter, I would love a machine-checkable

logic for reasoning about, and proving, the correctness of file system applications.

However, there is no reason why this should stop at ZFS. Such a logic for TxForest

would be useful with or without an accompanying logic for ZFS. Additionally, it

should be possible to serve a dual function, much like the one mentioned in the

previous paragraph, where users could include their desired post-conditions in the

logic and we could both derive the necessary preconditions and generate a script

to check whether they hold.

• Various ZFS Improvements - P+R. Finally, there are a variety of other ZFS im-

provements mentioned in Chapter 6. These include providing a translation from

ZFS to POSIX, proving the correctness of both translations, and exploring the

possibilities of a typed file system.
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8.3 Postlude

This, dear reader, is the final section of my dissertation, in which I have decided to

provide a more biased view of my work. There are only two points that I wish to touch

on here, pertaining to my conviction that this is a real-world, important problem, and

my thoughts on the most impactful branches of future work.

First, I want to move away from the standard research spiel about why these

problems and solutions are important. I think it’s all true, of course, but beyond that,

I truly, deeply believe that ad hoc data is a vast real-world problem. Further, I am

constantly reminded of this fact when I speak to doctoral students in other fields and tell

them about my work, because they frequently tell me that they are having exactly this

problem. While I may not believe that they should use the current implementation of

my system, I haven’t seen a single idea that I think better addresses this problem. It is

possible that there already exists a better solution than my work out there, but if so, no

one (including me) seems to know about it.

For the future work, I attempted to provide a list that includes at least some project

which is interesting and executable to anyone who might plausibly read this dissertation.

However, I believe that certain lines of inquiry would have a larger (or smaller) impact

than others:

1. I think that the TxForest Users line of work is absolutely essential. We need

to design these systems in collaboration with our intended users and a thriving

ecosystem would see the system improved enough and used enough to make a real

difference.

2. I believe that designing a Restricted Expression Language would both be deeply

fascinating work and offer significant leverage for improving the language.

3. I think that the Logic would be useful, given the current push for verified computa-
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tion, but would require an exceptional design and tool for checking it.

4. The Typed File System sounds extremely cool to me and I like the elegance of a

potential TxForest Cost Model, but I am dubious that either would turn out to be

especially useful.

With that, I would like to thank you for reading my dissertation and tell you how

impressed I am that you got this far. I hope you got something out of it and please feel

free to contact me if you have questions about any of it!
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Chapter A

Appendix to Chapter 3

A.1 iForest Core Syntax

This section introduces a core calculus that we will use to prove a number of theorems

about the language. The calculus extends the Forest core calculus [7] with a delay

construct. Its syntax is as follows:

Paths p ::= · | p/u

Contents C ::=File u | Link p | Dir ℓ

File Systems fs ::= {|p1 7→ (a1,C1), . . . , pn 7→ (an ,Cn) |}

Specifications s ::= k τ2
τ1

| e :: s | ⟨x :s1, s2⟩ | [s | x ∈ e] | P(e) | s? | Delay(s)

Meta-variable u ranges over string constants, while meta-variable a ranges over file sys-

tem attributes (e.g., the data returned when using the stat command: size, permissions,

owner, time of last modification, etc.). The iForest surface language can be encoded into

the core calculus as follows:

• File and Link are translated to constants k τ2
τ1

, where types τ1 and τ2 are appropriate

representation and metadata types.

• s option is translated to s?
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• dir {x is s ;} is translated to

⟨_:dirunitunit , ⟨x1:s1, ⟨x2:s2, (. . . ⟨xn−1:sn−1, sn⟩⟩⟩⟩, where the first component of the pair

is a primitive that checks if the current node is a directory.

• s where e is translated to ⟨this:s ,P(e)⟩. As in the surface language, this form gives

the predicate expression access to the results of loading specification s through the

special variable this.

• ⟨s⟩ is translated to Delay(s)

The translations of other forms are straightforward.

A.2 iForest Semantics

This section defines the formal semantics of iForest and proves several round-tripping

properties.

Figure A.1 gives the representation and metadata types for each specification. The

type τ md denotes the pair (bool ∗ τ), where the boolean value indicates if an error

occurred during loading. We write τ cur for the type of a cursor that returns τ when

forced. Figures A.2 and A.3 define the load and store functions for each specification.

Only the rules for delays (the last two rules in each column) differ from the semantics

presented in the original Forest paper [7]. We explain the new rules in detail.

Loading. The judgment E ⊢ load (fs , p, s)� (r ,md) holds if, in environment E , when

we load file system fs at path p into memory as a specification s, we get a pair with

representation r and metadata md . We use a number of auxiliary functions. First, we

use functions loadk(E , fs , p) to implement the load function for each constant k τ2
τ1

. These

functions take an environment E , a file system fs , and a path p as arguments and return

the representation and metadata of type τ1 and τ2 respectively. Second, the operator
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JeKEτ evaluates expression e in environment E and returns a value of type τ . Third, we

use standard projection functions π1 and π2.

The first new rule introduced in iForest is for loading a delayed specification. This

rule returns as its representation a cursor (denoted c(E ,p,s)) encapsulating the current

environment, the path argument, and the specification that was delayed. This load

always succeeds so the unit md that is returned is (true, ()).

The second new rule uses a different judgment of the form E ′ ⊢ loadc(c(E ,p,s), fs)�

(r ,md). This judgment holds if, in environment E ′, when we load cursor c(E ,p,s) in file

system fs, we get representation and metadata pair (r ,md). The rule says that if we

perform a normal load in the given file system, fs, with the environment, path, and

specification encapsulated in the cursor, we will get the same result as when we perform

a cursor-load in fs in any environment.

Storing. The judgment E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′) holds if, in environment E

and file system fs , storing representation r and metadata md at path p using specification

s produces a new file system fs ′ and validator φ′.

A validator is a predicate on file systems that checks for internal inconsistencies

in the representation and metadata [7]. We say that storing passes validation if the

validator returns true when evaluated on the resulting file system. As with the load

function, we use several auxiliary functions to define the store function. First, we

use functions storek(E , fs , p, r ,md) to implement the store function for each constant

k τ2
τ1

. This function takes as arguments an environment E , a file system fs, a path p, a

representation r and metadata md . Second, we use an append operation on file systems,

fs1++fs2. Intuitively, this operation copies all contents from fs2 to fs1, overwriting any

contents they have in common. Third, the fs [p 7→ ⊥] function removes the mapping

for a path p in fs, or returns fs if p ̸∈ dom(fs). Finally, the function md s
default computes

“default” metadata for s.
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s RJsK MJsK

k τ2
τ1

τ1 τ2 md

e :: s RJsK MJsK
⟨x :s1, s2⟩ RJs1K ∗ RJs2K (MJs1K ∗MJs2K) md
[s | x ∈ e] RJsK list MJsK list md

P(e) unit unit md

s? RJsK option (MJsK option) md
Delay(s) (RJsK ∗MJsK) cur unit md

Figure A.1: iForest representation and metadata type semantic functions

The first new storing rule for iForest says that storing a delayed specification returns

an unchanged file system and a validator that always evaluates to true. The second new

rule introduces a judgment of the form E ′ ⊢ storec(c(E ,p,s), fs , r ,md) � (fs ′, φ′). This

holds if, in environment E ′, storing cursor c(E ,p,s) into file system fs with representation

r and metadata md yields a new file system and validator pair (fs ′, φ′). This rule says

that such a store is equivalent to storing the given representation and metadata with

the environment, path, and specification encapsulated in the cursor into the given file

system.

Round-tripping Properties. The original Forest paper proved two round-tripping prop-

erties, showing that a load and a subsequent store causes no change to the file system

(and passes validation) and that a store (if it passes validation) and a subsequent load

gives back the same representation and metadata pair that was just stored. These

properties also hold in iForest along with analogous properties for cursors. Formally:

Theorem A.2.1 (LoadStore). Let E be an environment, fs and fs ′ file systems, p a path, s

a specification, r a representation, md metadata, and φ′ a validator. If

E ⊢ load (fs , p, s)� (r ,md)

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′)
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E ⊢ load (fs , p, k τ2
τ1
)� loadk(E , fs , p)

E ⊢ load (fs , Jp/eKEfilepath, s)� (r ,md)

E ⊢ load (fs , p, e :: s)� (r ,md)

E ⊢ load (fs , p, s1)� (r1,md1)
(E , x 7→ r1, xmd 7→ md1) ⊢ load (fs , p, s2)� (r2,md2)

b = ((π1 md1) ∧ (π1 md2))

E ⊢ load (fs , p, ⟨x :s1, s2⟩)� ((r1, r2), (b, (md1,md2)))

JeKEα list = [w1, . . . , wn ]
∀i ∈ {1, . . . , n}.(E , x 7→ wi) ⊢ load (fs , p, s)� (ri,md i)

b =
∧n

i π1 md i rs = [r1, . . . , rn ] mds = [md1, . . . ,mdn ]

E ⊢ load (fs , p, [s | x ∈ e])� (rs, (b,mds))

b = JeKEbool
E ⊢ load (fs , p,P(e))� ((), (b, ()))

p ∈ dom(fs) E ⊢ load (fs , p, s)� (r ,md)

E ⊢ load (fs , p, s?)� (Some(r), (π1 md , Some(md)))

p ̸∈ dom(fs)

E ⊢ load (fs , p, s?)� (None, (true, None))

E ⊢ load (fs , p,Delay(s))� (c(E ,p,s), (true, ()))

E ⊢ load (fs , p, s)� (r ,md)

E ′ ⊢ loadc(c(E ,p,s), fs)� (r ,md)

Figure A.2: iForest load function semantics

then fs = fs ′ and φ′(fs ′).

Theorem A.2.2 (StoreLoad). Let E be an environment, fs and fs ′ file systems, p a path, s

a specification, r and r ′ representations, md and md ′ metadata, and φ′ a validator. If

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′) φ′(fs ′)

E ⊢ load (fs ′, p, s)� (r ′,md ′)

then (r ′,md ′) = (r ,md).
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E ⊢ store (fs , r ,md , p, k τ2
τ1
)� storek(E , fs , p, r ,md)

E ⊢ store (fs , r ,md , Jp/eKEfilepath, s)� (fs ′, φ′)

E ⊢ store (fs , r ,md , p, e :: s)� (fs ′, φ′)

md = (b, (md1,md2)) r = (r1, r2)
E ′ = (E , x 7→ r1, xmd 7→ md1)
b ′ = (b = (π1 md1) ∧ (π1 md2))

E ⊢ store (fs , r1,md1, p, s1)� (fs1, φ1)
E ′ ⊢ store (fs , r2,md2, p, s2)� (fs2, φ2)

φ′ = (λfs ′.b ′ ∧ φ1(fs
′) ∧ φ2(fs

′))

E ⊢ store (fs , r ,md , p, ⟨x :s1, s2⟩)� (fs1++fs2, φ
′)

rs = [r1, . . . , rj] mds = [md1, . . . ,md l]
JeKEα list = [w1, . . . , wm] n = min(j, l,m)
b ′ = (b =

∧n
i π1 md i) ∀i ∈ {1, . . . , n}.

(E , x 7→ wi) ⊢ store (fs , ri,md i, p, s)� (fs i, φi)
φ′ = (λfs ′.(j = l = m) ∧ b ′ ∧ (

∧n
i φi(fs

′)))
fs ′ = fs1++ . . .++fsn

E ⊢ store (fs , rs, (b,mds), p, [s | x ∈ e])� (fs ′, φ′)

φ′ = λfs ′.b = JeKEbool
E ⊢ store (fs , (), (b, ()), p,P(e))� (fs , φ′)

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′)
φ1 = (λfs ′.(b = π1 md) ∧ p ∈ dom(fs) ∧ φ′(fs ′))

E ⊢ store (fs , Some(r), (b, Some(md)), p, s?)� (fs ′, φ1)

φ′ = (λfs ′.md = None ∧ b ∧ p ̸∈ dom(fs ′))

E ⊢ store (fs , None, (b,md), p, s?)� (fs [p 7→ ⊥], φ′)

E ⊢ store (fs , r ,md s
default, p, s)� (fs ′, φ1)

φ′ = λfs ′.false

E ⊢ store (fs , Some(r), (b, None), p, s?)� (fs ′, φ′)

E ⊢ store (fs , r ,md , p,Delay(s))� (fs , λfs ′.true)

E ⊢ store (fs , r ,md , p, s)� (fs ′, φ′)

E ′ ⊢ storec(c(E ,p,s), fs , r ,md)� (fs ′, φ′)

Figure A.3: iForest store function semantics
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Theorem A.2.3 (iLoadStore). Let E , E ′, and E ′′ be environments, fs and fs ′ file systems,

r a representation, md a metadata, φ′ a validator, and c(E ,p,s) a cursor. If

E ′ ⊢ loadc(c(E ,p,s), fs)� (r ,md)

E ′′ ⊢ storec(c(E ,p,s), fs , r ,md)� (fs ′, φ′)

then fs = fs ′ and φ′(fs ′).

Theorem A.2.4 (iStoreLoad). Let E , E ′, and E ′′ be environments, fs and fs ′ file systems,

r and r ′ representations, md and md ′ metadata, φ′ a validator, and c(E ,p,s) a cursor. If

E ′ ⊢ storec(c(E ,p,s), fs , r ,md)� (fs ′, φ′) φ′(fs ′)

E ′′ ⊢ loadc(c(E ,p,s), fs
′)� (r ′,md ′)

then (r ′,md ′) = (r ,md).

Note these judgments do not require the same environments since the environment in

the cursor is used instead.

A.3 Skin Core Syntax and Semantics

This section describes the formal syntax and semantics of skins and their accompanying

type system.

Syntax. Figure A.4 defines the semantics for a skin core calculus. This syntax is a

subset of the syntax from Figure 3.3. For example, we do not have ⟩ ⟨ or map(h), which

can be encoded using other constructs—e.g., ⟩ ⟨ is equivalent to ⟨ ⟩;∼.

The syntax of delay trees is similar to the syntax of iForest specifications. Delay trees

are derived from specifications, but most details are stripped away, leaving only the basic

structure and its delay annotations. This elision makes delay trees easier to work with

in the formal semantics. Note that path expressions are eliminated in delay trees—we
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found that they are almost never useful and reduced readability. Finally, we have the

type syntax, which again mirrors specifications fairly closely, with a few additions: top

(⊤) and bottom (⊥) types, as well as intersections (t1 ∧ t2) and unions (t1 ∨ t2).

Semantics. Next, we describe the semantics of the functions shown in Figures A.5, A.6,

and A.7 and how they relate to iForest. Recall that we can apply a skin to a specification

using the application construct s@h. Skin application can be evaluated in four steps,

resulting in a new specification with the same underlying structure, but possibly different

delay annotations:

1. Extract a delay tree d from s using dtreeof .

2. Check the type of h against the type of d by composing the typeofH and J·Kt

functions.

3. If the preceding step produces a type error, report an error. Otherwise we apply

the skin application function J·Kh to h and d to generate d ′.

4. Use the apply function to apply the resulting delay tree d ′ back to s to generate s ′,

the final result of s@h.

The function dtreeof strips away extraneous information from its argument to

generate the corresponding delay tree. The function typeofH computes the type of a skin.

Since many skins can be applied to a variety of delay trees, we view types as sets to

which delay trees (and, by extension, specifications) can belong. The function typeofD

computes a type from a delay tree. This function is not needed in iForest, but is used in

a number of theorems.

The type of the primitive skins delay (⟨ ⟩), negate (∼), and identity (_) are all top

(⊤). This reflects the fact that these skins affect the delay annotation of a specification

and do not depend on its structure. The structual skins for comprehensions ([h]), options

(h?), and pairs ({h1, h2}) encode the corresponding constraints on the structure of the
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delay tree and have the corresponding structural types (i.e., [t ], t?, and {t1, t2}). The

sequential composition skin (h1; h2) requires that the specification that it is applied to

belong to the types of both of its sub-skins—i.e., it has an intersection type (t1 ∧ t2). The

union skin (h1 + h2) requires that the specification it is applied to must belong to either

of the types of its sub-skins—i.e., it has a union type (t1 ∨ t2). Finally, the predicate skin

(h|t) requires that the specification to belong to both the specified type and the type of

its sub-skin.

The type-checking function (J·Kt) takes a type and a delay tree and checks whether

the delay tree belongs to that type. The skin application function (J·Kh) applies a skin to

a delay tree, producing a new delay tree with the same structure, but possibly different

delay annotations. Note that skin application is partial—it is undefined if the delay tree

does not belong to the type of the skin. However, since the type system is sound and

complete, it is easy to ensure that the function will never be undefined in practice. The

apply function applies a delay tree to a specification, modifying its delay annotations, but

not its structure. This function is partial because the structure of the delay tree and the

specification must match. However, since delay trees are extracted from specifications

(with dtreeof ) and skins preserve structure (cf. Appendix A.4), partiality is not an issue

in practice.

A.4 Skin Properties and Theorems

This section presents the main lemmas and theorems tha we have proven about the skin

language. Before we can prove these results, we need a few additional definitions. First,

we define skin application formally:

Definition A.4.1 (Skin Application).

s@h = apply s (JhKh (dtreeof s))
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Metavar Conventions

s ∈ Specification
h ∈ Skin
d ∈DTree
t ∈Type
x ∈Var
e ∈ Exp
b ∈B

Function Types

dtreeof : Specification → DTree
typeofD : DTree → Type
typeofH : Skin → Type
J·Kt : Type → DTree → B
J·Kh : Skin → DTree ⇀ DTree
apply : Specification → DTree ⇀ Specification

Delay Tree Syntax

d ::= k τ2
τ1

| d?
| [d ]
| p
| (d1, d2)
| Delay(d)

Skin Syntax

h ::= ⟨ ⟩
| ∼
| _
| h?
| [h]
| h|t
| {h1, h2}
| h1 + h2
| h1; h2

Type Syntax

t ::= consτ2τ1
| p
| [t ]
| t?
| {t1, t2}
| t1 ∧ t2
| t1 ∨ t2
| ⊤
| ⊥

Figure A.4: Formal syntax of all components of the skin language

Next, we define skin equivalence:

Definition A.4.2 (Skin Equivalence).

h1 = h2 ⇐⇒

∀d0. ((Jh1Kh d0 = d ∧ Jh2Kh d0 = d ′) =⇒ d = d ′)

Hence, two skins are equivalent if and only if they produce the same result when applied

to a given specification.

Using these definitions, we can prove a number of interesting equivalences on skins:
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dtreeof : Specification → DTree

dtreeof k τ2
τ1

= k τ2
τ1

dtreeof e :: s = dtreeof s
dtreeof ⟨x :s1, s2⟩ =(dtreeof s1, dtreeof s2)
dtreeof [s | x ∈ e] = [dtreeof s ]
dtreeof P(e) = p
dtreeof s? = (dtreeof s)?
dtreeof Delay(s) =Delay(dtreeof s)

typeofD : DTree → Type

typeofD k τ2
τ1

= consτ2τ1
typeofD p = p
typeofD Delay(d) = typeofD d
typeofD [d ] = [typeofD d ]
typeofD d? = (typeofD d)?
typeofD (d1, d2) = {typeofD d1, typeofD d2}

typeofH : Skin → Type

typeofH ⟨ ⟩ =⊤
typeofH ∼ =⊤
typeofH _ =⊤
typeofH [h] = [typeofH h]
typeofH h? = (typeofH h)?
typeofH {h1, h2} = {typeofH h1, typeofH h2}
typeofH h1; h2 =(typeofH h1) ∧ (typeofH h2)
typeofH h1 + h2 =(typeofH h1) ∨ (typeofH h2)
typeofH h|t = t ∧ (typeofH h)

Figure A.5: Formal semantics of skins: dtreeof , typeofD , and typeofH
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J·Kt : Type → DTree → B
JtKt d =

match d with
| Delay(d) -> JtKt d
| d ->

match (t,d) with
| (consτ2τ1,k

τ2
τ1 ) -> true

| (p,p) -> true
| (t?,d?) -> JtKt d
| ([t ],[d ]) -> JtKt d
| ({t1,t2},(d1, d2)) -> Jt1Kt d1 && Jt2Kt d2
| (t1 ∧ t2,d) -> Jt1Kt d && Jt2Kt d
| (t1 ∨ t2,d) -> Jt1Kt d || Jt2Kt d
| (⊤,_) -> true
| (⊥,_) -> false
| _ -> false

J·Kh : Skin → DTree ⇀ DTree

JhKh d =
match h with
| h|t -> if JtKt d then JhKh d
| h1; h2 -> Jh2Kh (Jh1Kh d)
| h1 + h2 ->

if JtypeofH hKt d then Jh1Kh d else Jh2Kh d
| h ->

let d,del =
match d with
| Delay(d) -> d,true
| d -> d,false

in
let d,del =

match (h,d) with
| (h?,d?) -> (JhKh d)?,del
| ([h],[d ]) -> [JhKh d ],del
| ({h1,h2},(d1, d2)) -> (Jh1Kh d1, Jh2Kh d2),del
| (⟨ ⟩,d) -> d,true
| (∼,d) -> d,(not del)
| (_,d) -> d,del

in
if del
then Delay(d)
else d

Figure A.6: Formal semantics of skins: J·Kt and J·Kh
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apply : Specification → DTree ⇀ Specification
apply s d =

match d with
| Delay(d) -> Delay(apply s d)
| d ->

let s =
match s with
| Delay(s) -> s
| s -> s

in
match (s,d) with
| (k τ2τ1 ,k

τ2
τ1 ) -> k τ2τ1

| (P(e),p) -> P(e)
| (s?,d?) -> (apply s d)?
| (e :: s,d) -> e :: (apply s d)
| ([s | x ∈ e],[d ]) -> [apply s d | x ∈ e]
| (⟨x :s1, s2⟩,(d1, d2)) ->

⟨x :apply s1 d1, apply s2 d2⟩

Figure A.7: Formal semantics of skins: apply

Theorem A.4.3 (Equalities on Skins).

∼;∼ = _

h1; (h2; h3) = (h1; h2); h3

(h1 + h2); h3 = h1; h3 + h2; h3

h1; (h2 + h3) = h1; h2 + h1; h3

h; _ = h = _; h

Theorem A.4.3 states that double negation is the same as identity, and that composition

is associative, distributes over union, and has the identity skin as a unit.

The next few lemmas are used to prove that skin application is compositional

(Theorem A.4.8). First we show that application preserves delay trees:

Lemma A.4.4 (Delay Tree Preservation).

d ∈ dom(apply s) =⇒ dtreeof (apply s d) = d
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Let =s
d denote equality of specifications modulo delay annotations. Two specifications

are related by this operator if they have the same underlying structure. The next lemma

tells us that the delay annotations in a specification are irrelevant to the result of the

apply function.

Lemma A.4.5 (Apply Equivalence).

s1 =s
d s2 =⇒ apply s1 d = apply s2 d

Lemma A.4.6 shows that the apply function does not change the structure of a specifica-

tion, i.e., the output is equivalent to the input modulo delays.

Lemma A.4.6 (Apply Preservation).

d ∈ dom(apply s) =⇒ apply s d =s
d s

Lemma A.4.7 shows that applying apply twice in sequence is equivalent to just the second

application.

Lemma A.4.7 (Apply Cancellation).

d1 ∈ dom(apply s) =⇒

apply (apply s d1) d2 = apply s d2

Finally, Theorem A.4.8 combines the previous four lemmas to prove that applying two

skins to a specification one after another is equivalent to applying their composition.

Theorem A.4.8 (Skin Composition).

(s@h1)@h2 = s@h1; h2

Let =d
d denote equality of delay trees modulo delay annotations. The next two

lemmas are used to prove that the type of a specification is not changed when a skin

is applied (Theorem A.4.11). Lemma A.4.9 shows that the type of a delay tree is not

affected by delay annotations.
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Lemma A.4.9 (Invariance under Delays).

d1 =d
d d2 =⇒ typeofD d1 = typeofD d2

Lemma A.4.10 shows that if two specifications are equivalent modulo delays (i.e., have

the same structure), then so are the delay trees extracted from them.

Lemma A.4.10 (DTreeof Preservation).

s1 =s
d s2 =⇒ dtreeof s1 =d

d dtreeof s2

Theorem A.4.11 shows that the type of a specification is not affected by skin application.

Theorem A.4.11 (Invariance under Skin Application).

dtreeof s ∈ dom(JhKh) =⇒

typeofD (dtreeof s) = typeofD (dtreeof s@h)

This property is important because it means that users only need to consider the

base specification when writing a compatible skin. Any delays or skins applied to a

specification or its sub-specifications are irrelevant.

The next three lemmas taken together show that the type system is sound and

complete. Lemma A.4.12 shows that type checking only depends on the structure of a

delay tree, not the delays.

Lemma A.4.12 (Typing Invariance under Delays).

(d1 =d
d d2 ∧ JtKt d1 =⇒ JtKt d2)

Lemma A.4.13 shows that the underlying structure of a delay tree is not changed by skin

application.

Lemma A.4.13 (Skin Application Preservation).

JhKh d1 = d2 =⇒ d1 =d
d d2
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Lemma A.4.14 shows that only the underlying structure of a delay tree determines

whether or not a skin can be applied to it.

Lemma A.4.14 (Domain Invariance under Delays).

d1 =d
d d2 ∧ d1 ∈ dom(JhKh) =⇒ d2 ∈ dom(JhKh)

Finally, using these lemmas, we prove that the type system is sound and complete.

Theorem A.4.15 (Soundness). The type system is sound, i.e.,

JtypeofH hKt d =⇒ d ∈ dom(JhKh)

Theorem A.4.16 (Completeness). The type system is complete, i.e.,

d ∈ dom(JhKh) =⇒ JtypeofH hKt d
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Chapter B

Appendix to Chapter 5

B.1 Proofs

B.1.1 Serializability

We restate and prove Theorem 5.4.1:

Theorem 5.4.1 (Serializability). Let FS ,FS ′ be file systems, GL,GL′ be global logs, and

T a transaction pool such that ∀t ∈ T . initial FS t . Then:

⟨FS ,GL,T ⟩ →∗
G ⟨FS ′,GL′, {}⟩ =⇒ ∃ℓ ∈ Perm(T ). JℓKG FS = FS ′

where →∗
G is the reflexive, transitive closure of →G.

Proof. The definitions of initial and restart are in Figure B.1. By the premise, Theo-

rem B.1.4 and T \ {} = T , we have:

∃[t1; . . . ; tn ] ∈ Perm(T ).

⟨restart FS t1⟩
σ1−→

∗
L ⟨(E1, p1, ps1, z1),FS 1, Skip⟩

...

∧ ⟨restart FS n−1 tn⟩
σn−→

∗
L ⟨(En , pn , psn , zn),FS

′, Skip⟩
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initial fs ((({}, p, {}, z ), fs, cs), (cs, ts, [])) when is_none? z .ancestor ≜ true

initial _ _ ≜ false

restart FS (((E , p, ps, z ), fs, c), (cs, ts, σ)) ≜ (({}, p', {}, z'),FS , cs)
where (p', z') = goto_root (E , p, ps, z ) fs

Figure B.1: Definitions of initial and restart

By Lemma B.1.1 and initial FS t , we have:

⟨restart fs t⟩ σ−→
∗
L ⟨(E , p, ps , z ), fs ′, Skip⟩ =⇒ JtKG fs = fs ′

Thus, we have:

∃[t1; . . . ; tn ] = ℓ ∈ Perm(T ).

JFSKG t1 = FS 1 ∧ . . . ∧ JFS n−1KG tn = FS ′

=⇒ JℓKG FS = FS ′ (By definition of J·KG)

Lemma B.1.1 shows that running a transaction in the local operational semantics

produces the same result as in the denotational semantics.

Lemma B.1.1 (Operational to Denotational). Let fs be a file system and

t = (((E , p, ps , z ), _, c), _) be a transaction, then:

⟨(E , p, ps , z ), fs , c⟩ σ−→
∗
L ⟨(E ′, p ′, ps ′, z ′), fs ′, Skip⟩ =⇒ JtKG fs = fs ′

Proof. By rule induction from a similar big-step semantics and the equivalence of the

small-step and big-step semantics. See Winskel’s book for a nearly identical proof [40].

Definition B.1.2 (Well-formed Transactions). A transaction t is well-formed with respect

to a file system FS and a global log GL (denoted FS ,GL ⊢ t) iff t comes from running

an initial transaction for some number of steps and FS comes from merging the initial

local file system of t with the more recent parts of GL:
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FS ,GL ⊢ t ⇐⇒

∃fs , t ′. initial fs t ′ ∧ ⟨FS ,GL, {t ′}⟩ →∗
G ⟨FS ,GL, {t}⟩

∧ GL′ = {le | le ∈ GL ∧ get_ts le ≥ get_ts t} ∧ FS = merge fs GL′

We call a transaction pool T well-formed in a similar manner when every transac-

tion in it is well-formed:

FS ,GL ⊢ T ⇐⇒ ∀t ∈ T . FS ,GL ⊢ t

Definition B.1.3 (Transaction Pool Difference). Difference on transaction pools, written

T \ T ′, is defined when there is a file system and global log for which both transac-

tion pools are well-formed. Then, transaction pool difference is exactly normal multiset

difference where equality on elements is defined by having the same initial transaction,

t ′, as seen in Definition B.1.2.

The next theorem is amenable to induction and serves as a key component of our

serializability theorem proof:

Theorem B.1.4 (Inductive Serializability). Let FS ,FS ′ be file systems, GL,GL′ be global

logs, and T ,T ′ transaction pools such that FS ,GL ⊢ T , then:

⟨FS ,GL,T ⟩ →∗
G ⟨FS ′,GL′,T ′⟩ =⇒

∃[t1; . . . ; tn ] ∈ Perm(T \ T ′).

⟨restart FS t1⟩
σ1−→

∗
L ⟨(E1, p1, ps1, z1),FS 1, Skip⟩

...

∧ ⟨restart FS n−1 tn⟩
σn−→

∗
L ⟨(En , pn , psn , zn),FS

′, Skip⟩

Proof. By induction on the multi-step relation →∗
G. See Figure B.1 for a definition

of restart. The reflexive case is straight-forward, while the transitive step relies on

Lemma B.1.5 to be able to apply the induction hypothesis twice. The single-step case is

significantly more complicated and entirely covered in Lemma B.1.6.
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Lemma B.1.5 (Well-formedness Preservation). Let FS ,FS ′ be file systems, GL,GL′ be

global logs, and T ,T ′ transaction pools, then:

FS ,GL ⊢ T ∧ ⟨FS ,GL,T ⟩ →∗
G ⟨FS ′,GL′,T ′⟩ =⇒ FS ′,GL′ ⊢ T ′

Proof. By straightforward induction on the multi-step relation →∗
G.

Lemma B.1.6 (Single-step Serializability). Let FS ,FS ′ be file systems, GL,GL′ be global

logs, and T ,T ′ transaction pools such that FS ,GL ⊢ T .

Then, ⟨FS ,GL,T ⟩ →G ⟨FS ′,GL′,T ′⟩ ∧ t ∈ (T \ T ′) =⇒

⟨restart FS t⟩ σ−→
∗
L ⟨(E ′, p ′, ps ′, z ′),FS ′, Skip⟩

Proof. By induction on the single-step relation →G. The theorem holds vacuously unless

the step is a commit. If the step is a commit, then it follows from Theorem B.1.7.

Theorem B.1.7 (Merge Property). Let t = (((E , p, ps , z ), fs , c), (cs , ts , σ)) be a transac-

tion, GL a global log, and FS a file system such that FS ,GL ⊢ t , check_log GL σ ts, and

merge FS σ = FSm.

Then, ⟨restart FS t⟩ σ−→
∗
L ⟨(E ′, p ′, ps ′, z ′),FSm, Skip⟩

Proof. Follows directly from Lemma B.1.13. We use FS ,GL ⊢ t to conclude

∃t ′. ⟨FS ,GL, {t ′}⟩ →∗
G ⟨FS ,GL, {t}⟩ and that FS ,GL ⊢ t ′.

Then we can apply the lemma.

Lemma B.1.8 (Partial Check Log). Let ts be a timestamp, GL a global log, and σ,σ′ local

logs.

Then, check_log GL (σ · σ′) ts =⇒ check_log GL σ ts ∧ check_log GL σ′ ts

Proof. extract_paths (σ · σ′) = extract_paths σ ∪ extract_paths σ′
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Lemma B.1.9 (Check Log Property). Let t be a transaction with log and timestamp, σ

and ts, respectively, GL a global log, and FS a file system such that FS ,GL ⊢ t .

Then, check_log GL σ ts =⇒ FS ∼ σ

Proof. By induction on the structure of the log σ and in the non-empty case, induction

on the multi-step function →∗
G having used FS ,GL ⊢ t to establish a derivation. See

Figure B.2 for a definition of ∼.

Uses Lemma B.1.10 and Lemma B.1.12 as well as Lemma B.1.19 (in the transitive

case).

Lemma B.1.10 (Reads Correspond to Values). If Read C p ∈ canonicalize σ

and ⟨(E , p, ps , z ), fs , c⟩ σ−→
∗
L ⟨(E ′, p ′, ps ′, z ′), fs ′, c ′⟩.

Then, fs(p) = C .

Proof. By induction on the multi-step function σ−→
∗
L.

Uses Lemma B.1.11 in transitive case.

Lemma B.1.11. ∀p. ̸ ∃p ′. subpath p p ′ ∧ p ′ ∈ writes σ

∧ ⟨(E , p, ps , z ), fs , c⟩ σ−→
∗
L ⟨(E ′′, p ′′, ps ′′, z ′′), fs ′′, c ′′⟩ =⇒ fs(p) = fs ′′(p)

Proof. By induction on the multi-step function σ−→
∗
L.

Lemma B.1.12 (Global to Local). Let FS be a file system and GL be a global log. Then,

⟨FS ,GL, {(((E , p, ps , z ), fs , c), (cs , ts , σ))}⟩ →∗
G

⟨FS ,GL, {(((E ′, p ′, ps ′, z ′), fs ′, c ′), (cs , ts , σ · σ′))}⟩

∧ check_log GL (σ · σ′) ts =⇒

⟨(E , p, ps , z ), fs , c⟩ σ′
−→

∗

L ⟨(E ′, p ′, ps ′, z ′), fs ′, c ′⟩
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Proof. By induction on the multi-step relation →∗
G. The transitive case is straightforward

and relies on Lemma B.1.8. The reflexive case is trivial. In the step case, commit and

restart are ruled out, leaving single transaction step.

Lemma B.1.13 (Merge Lemma). Let t = (td , (cs , ts , σ)) and t ′ = (td ′, (cs , ts , σ · σ′)) be

transactions, GL a global log, and FS a file system such that FS ,GL ⊢ t ∧ check_logGL (σ·

σ′) ts.

Then,

⟨FS ,GL, {t}⟩ →∗
G ⟨FS ,GL, {t ′}⟩ ∧ merge FS σ = FS ′ ∧ merge FS ′ σ′ = FSm

=⇒ ⟨insert FS ′ td⟩ σ′
−→

∗

L ⟨insert FSm td ′⟩

Proof. By induction on the multi-step relation →∗
G. The transitive case gets the intermedi-

ate well-formedness and check_log results by relying on Lemma B.1.8 and Lemma B.1.5.

Additionally, it relies on the fact that the global log monotonically grows at the same

time as the file system changes, which means that the intermediate steps have the same

FS and GL.

The single-step case first rules out commit (because a transaction remains) and

restart (because check_log GL σ ts). With only the local step case remaining, we induct

on the single-step relation σ′
−→L.

The IMP rules are straightforward, and mostly do not affect the file system. In

the Forest Command case, we use Lemma B.1.14 and Lemma B.1.9 to derive FS ′ ∼ σ′,

then use Lemma B.1.15 and Lemma B.1.16 for Forest Navigations and Forest Updates

respectively. Since Forest Navigations only produce reads (by Lemma B.1.15), we also

note that FSm = FS ′ in these cases.

Lemma B.1.14 (Intermediate Well-formedness). Let t = (td , (cs , ts , σ)) and t ′ = (td ′, (cs , ts , σ·

σ′)) be transactions, GL a global log, and FS a file system.
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Then,

⟨FS ,GL, {t}⟩ →∗
G ⟨FS ,GL, {t ′}⟩ ∧ FS ,GL ⊢ t ∧ merge FS σ = FSm =⇒ FSm,GL ·

(add_ts ts σ) ⊢ t ′

Proof. Follows from Definition B.1.2.

Lemma B.1.15 (Merge: Forest Navigations). If FS ∼ σ, then

∀fn. (∃fs . JfnKc (E , p, ps , z ) fs = (ctxt , fs , σ))

=⇒ reads σ = σ ∧ JfnKc (E , p, ps , z ) FS = (ctxt ,FS , σ)

Proof. By induction on the Forest Navigations fn and mutually dependent on Lemma B.1.17.

Uses Lemma B.1.18 and Lemma B.1.20 to be able to apply Lemma B.1.17 and the induc-

tion hypothesis in sequence.

Lemma B.1.16 (Merge: Forest Updates). If FS ∼ σ, then

∀fu. (∃fs . JfuKc (E , p, ps , z ) fs = (ctxt , fs ′, σ) ∧ merge FS σ = FSm)

=⇒ JfuKc (E , p, ps , z ) FS = (ctxt ,FSm, σ)

Proof. By induction on the Forest Updates fu. Uses Lemma B.1.17 for subexpressions

and Lemma B.1.18 and Lemma B.1.20 to focus on the write portions of the log.

Lemma B.1.17 (Merge: Expressions). If FS ∼ σ, then

∀e. (∃fs . JeKe (E , p, ps , z ) fs = (v , σ))

=⇒ reads σ = σ ∧ JeKe (E , p, ps , z ) FS = (v , σ)

Proof. By induction on the expressions e and mutually dependent on Lemma B.1.15. For

Verify, there is a further induction on s . For Run fe e, we apply the induction hypothesis

twice and for Run fn e, we apply Lemma B.1.15 once and the induction hypothesis once.

In both cases, we rely on Lemma B.1.18 and Lemma B.1.20.
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FS ∼ σ ≜ ∀ Read C p ∈ canonicalize σ. FS (p) = C

canonicalize σ ≜ fold [] σ necessary

necessary acc (Read C p) ≜
if subpath p (writes acc) ∨ p ∈ reads acc
then acc
else (Read C p) · acc

necessary acc (Write_file C1 C2 p) ≜
(PathWritten p) · (necessary acc (Read C1 p))

necessary acc (Write_dir (File u) (Dir ℓ) p) ≜
(PathWritten p) · (necessary acc (Read (File u) p))

necessary acc (Write_dir (Dir ℓ') (Dir ℓ) p) ≜
fold (necessary acc (Read (Dir ℓ') p))

((ℓ \ ℓ') ∪ (ℓ' \ ℓ))
(λacc u. PathWritten p/u · acc)

Figure B.2: Log Compatibility definition

Lemma B.1.18 (Log Compatibility with Reads). FS ∼ (σ · σ′) ∧ reads σ = σ =⇒

FS ∼ σ ∧ FS ∼ σ′

Proof. The first part follows from Lemma B.1.20. The second from the fact that

canonicalize σ′ ⊆ canonicalize ((reads σ) · σ′).

Lemma B.1.19 (Log Compatibility Combination). FS ∼ σ ∧ FS ∼ σ′ =⇒ FS ∼ (σ ·σ′)

Proof. reads (canonicalize (σ·σ′)) ⊆ reads (canonicalize σ) ∪ reads (canonicalize σ′)

Lemma B.1.20 (Log Compatibility Parts). FS ∼ (σ · σ′) =⇒ FS ∼ σ

Proof. reads (canonicalize σ) ⊆ reads (canonicalize (σ · σ′))

B.1.2 Properties

Consistency. We restate the consistency theorems from Section 5.3 and give the main

idea of their proofs.
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Theorem 5.3.1. Consistency implies partial consistency:

∀ps . consistent? (Consistent (p, ps , z ) fs) =⇒

consistent? (PConsistent (p, ps , z ) fs)

Theorem 5.3.2. Partial Consistency is monotonic w.r.t. the path set:

∀ps1, ps2. ps2 ⊆ ps1 =⇒

consistent? (PConsistent (p, ps1, z ) fs) =⇒

consistent? (PConsistent (p, ps2, z ) fs)

∧ complete? (PConsistent (p, ps2, z ) fs) =⇒

complete? (PConsistent (p, ps1, z ) fs)

Theorem 5.3.3. Given a zipper z and a path set ps ′ that covers the entirety of z , partial

consistency holds iff full consistency holds:

∀ps , ps ′. Cover (p, ps ′, z ) fs ∧ ps ′ ⊆ ps =⇒

consistent? (Consistent (p, ps , z ) fs) ⇐⇒

consistent? (PConsistent (p, ps , z ) fs)

Proof. The proofs of these three theorems are straightforward by induction on the

structure of the specification in z . The theorems ignore the log portion of partial

consistency.

Core Calculus Equivalences. We present several equivalences in the core calculus.

Definition B.1.21 (Equivalence modulo logs). We define equivalence modulo logs in-

ductively as follows. We consider partial functions to be total with unmapped values

mapping to ⊥:

⊥ ≡ _

_ ≡ ⊥

((E , p, ps , z ), fs , _) ≡ ((E , p, ps , z ), fs , _)

f ≡ f ′ when ∀v . f v ≡ f ′ v

191



Lemma B.1.22 (Core Calculus Equivalences).

JDown; UpKc ≡ JSkipKc

JInto_Opt; OutKc ≡ JSkipKc

JInto_Comp; OutKc ≡ JSkipKc

JInto_Pair; OutKc ≡ JSkipKc

JNext; PrevKc ≡ JSkipKc

JPrev; NextKc ≡ JSkipKc

Round-Tripping Laws. We present several round-tripping laws in the style of lenses [12].

Lemma B.1.23 (Round-Tripping Laws).

JStore_File Fetch_FileKc ≡ JSkipKc File-Load-Store

JStore_Dir Fetch_DirKc ≡ JSkipKc Dir-Load-Store

JStore_File u1; Store_File u2Kc ≡ JStore_File u2Kc File-Store-Store

JCreate_Path; Create_PathKc ≡ JCreate_PathKc CreatePath-Store-Store

Jx := u; Store_File u; x := Fetch_FileKc ≡ Jx := uKc File-Store-Load

Jx := ℓ; Store_Dir ℓ; x := Fetch_DirKc ≡ Jx := ℓKc Dir-Store-Load

Note that JStore_Dir ℓ1; Store_Dir ℓ2Kc ≡ JStore_Dir ℓ2Kc is conspicuously missing.

In fact, it does not hold. Consider the situation where ℓ2 is the current contents of the

given directory. In this case, Store_Dir ℓ2 is a no-op, and thus the right-hand side is

equivalent to Skip. However, if, for example, ℓ1 = [], then the left-hand side will turn

every child into File ε.
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