
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Incremental Forest: A DSL for Efficiently Managing Filestores

Jonathan DiLorenzo
Cornell University, USA
dilorenzo@cs.cornell.edu

Richard Zhang ∗

University of Pennsylvania, USA
rmzhang@seas.upenn.edu

Erin Menzies
Cornell University, USA
egm55@cornell.edu

Kathleen Fisher
Tufts University, USA
kfisher@eecs.tufts.edu

Nate Foster
Cornell University, USA
jnfoster@cs.cornell.edu

Abstract
File systems are often used to store persistent application
data, but manipulating file systems using standard APIs can
be difficult for programmers. Forest is a domain-specific
language that bridges the gap between the on-disk and in-
memory representations of file system data. Given a high-
level specification of the structure, contents, and properties of
a collection of directories, files, and symbolic links, the Forest
compiler generates tools for loading, storing, and validating
that data. Unfortunately, the initial implementation of Forest
offered few mechanisms for controlling cost—e.g., the run-
time system could load gigabytes of data, even if only a
few bytes were needed. This paper introduces Incremental
Forest (iForest), an extension to Forest with an explicit delay
construct that programmers can use to precisely control costs.
We describe the design of iForest using a series of running
examples, present a formal semantics in a core calculus, and
define a simple cost model that accurately characterizes the
resources needed to use a given specification. We propose
skins, which allow programmers to modify the delay structure
of a specification in a compositional way, and develop a static
type system for ensuring compatibility between specifications
and skins. We prove the soundness and completeness of
the type system and a variety of algebraic properties of
skins. We describe an OCaml implementation and evaluate
its performance on applications developed in collaboration
with watershed hydrologists.

∗ Work performed at Cornell University.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Specialized applica-
tion languages

Keywords Data description languages, file systems, file-
stores, domain-specific languages, ad hoc data, laziness

1. Introduction
File systems are a popular way of storing persistent applica-
tion data. Programmers choose to use file systems instead
of traditional solutions such as key-value stores or relational
databases for a variety of reasons. File systems are ubiquitous,
being bundled with every major operating system. They have
a low barrier to entry, since programmers can manipulate
data directly using standard APIs and command-line tools.
They do not impose overheads such as setting up special user
accounts, configuring access control, defining schemas, creat-
ing tables, importing data, etc. They offer portability, since
data is not “locked in” to a proprietary format and can be
easily transferred from one system to another.

At the same time, file systems have a number of limitations
that create practical hurdles in applications. Having to write
code to traverse directories and parse file contents is tedious
and error-prone. Even simple tasks, such as computing the
number of entries within a given date range on a directory
of server logs, requires opening, loading, and processing a
large amount of data. In addition, APIs such as POSIX do not
provide constructs for documenting assumptions about the
file system. Applications that depend on certain files being
present or directories being structured in particular ways lack
mechanisms for declaring and enforcing those constraints.
Simple mistakes such as a misnamed directory or a file with
the wrong permissions can lead to application-level errors,
but are difficult to detect and diagnose using existing tools.

Previous work on Forest [4] proposed a collection of type-
based abstractions for describing the structure, contents, and
properties of file system data. With Forest, the programmer
writes a high-level specification that describes the expected

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4444-9/16/11...

http://dx.doi.org/10.1145/2983990.2984034

252

organization of a collection of directories, files, and symbolic
links—a filestore—and the compiler automatically generates
a datatype to represent the data in memory, accompanying
“load” and “store” functions that map between on-disk and
in-memory representations, and a suite of generic validation,
visualization, and summarization tools. Hence, Forest solves
the two main issues discussed above: it allows applications to
be written against high-level datatypes rather than low-level
APIs, and it provides mechanisms for automatically checking
assumptions about filestores.

Unfortunately, while Forest offers powerful abstractions
for describing and transforming filestores, it lacks mecha-
nisms for precisely controlling the costs associated with using
a specification, such as the amount of data read from or writ-
ten to the file system, the number of file descriptors opened,
and so on. A direct implementation of the language would
suffer from serious performance problems. For example, it
is straightforward to write a recursive “universal” specifica-
tion in Forest that matches all of the files, directories, and
symbolic links reachable from the root, but obviously actu-
ally loading the entire file system into memory would not be
feasible! Some of these issues can be side-stepped in a lazy
language (the initial version of Forest was built in Haskell)
but reasoning about cost remains a challenge.

This paper presents an extension to Forest that retains the
features of the original language while offering programmers
precise control over costs. Compared to the original version
of the language, henceforth called Classic Forest when ap-
propriate to avoid confusion, the main new feature provided
in iForest is a “delay” construct that allows programmers to
specify that certain pieces of a filestore should not be loaded
or stored, unless explicitly requested by the programmer. At
a technical level, a delayed specification differs from the un-
delayed version in several important ways. First, rather than
returning the actual value stored on the file system, the load
function for a delayed specification returns a “cursor” that can
be subsequently loaded (or stored) using a simple monadic
interface. The types for the in-memory representation and the
store function are similarly modified to reflect the fact that
the value returned by the load function is a cursor and not an
ordinary value. Second, a delayed specification has constant
cost—e.g., the load function returns immediately, without
reading any data from the file system.

In general, there can be many ways to add delays to a
given Forest specification. With no delays, the application
can manipulate values stored on the file system directly, as in
Classic Forest, but costs are coarse-grained. Alternatively, if
one adds a delay at every level of the specification, then the
application becomes more complicated because the type for
the in-memory representation contains cursors at every level
of structure. However, the cost of using the load and store
functions becomes “pay as you go.” In between these two
extremes, one can add delays at different levels of granularity,

making tradeoffs between the simplicity of the in-memory
representation and the degree of control over costs.

To allow programmers to use the same “base” specifica-
tion with different delays, we develop an expressive “skin”
language that can be used to adjust the delay structure of
a specification in a compositional way. We provide a para-
metric cost model, which can be instantiated to reason about
several different types of costs. We show that costs mono-
tonically decrease as delays are added to a specification. We
also develop a static type system that ensures compatibility
between a given skin and specification.

To evaluate our design for iForest, we define a formal
semantics for the language, and prove a number of properties
including round-tripping laws and natural algebraic properties
of skins. We develop an iForest specification for the Soil and
Water Assessment Tool (SWAT) [13], a modeling framework
used by watershed hydrologists to quantify the impacts of
various changes to the features of a watershed. SWAT stores
persistent information in a filestore with tens of megabytes of
structured files. We develop two real-world applications using
iForest: one to calibrate a SWAT model against an external
data set and another to predict the effects of land use changes
such as changing the type of fertilizer used on farms. We
conduct experiments showing that iForest leads to significant
performance improvements over a naïve implementation that
loads the entire filestore into memory.

Overall, the contributions of this paper are as follows:

• We make the case for developing domain-specific tools
for filestores that offer precise control over cost.
• We present iForest, a system that realizes these goals as

an embedded domain-specific language in OCaml.
• We introduce skins, establish their formal properties, and

show their utility on a variety of examples.
• We describe a prototype implementation of iForest and

evaluate its performance on several SWAT applications.

The rest of this paper is structured as follows. Section 2
motivates iForest’s design and presents an overview of its
main features. Section 3 formalizes Classic Forest. Section 4
presents the design of iForest and defines the syntax and
semantics of the language. Section 5 introduces a dynamic
cost model. Section 6 presents the skin language. Section 7
describes our experiences building various applications in
iForest as well as quantitative experiments on SWAT data. We
discuss related work in Section 8 and conclude in Section 9.
The appendix formalizes the main features of iForest in a
core calculus and presents theorems and proofs.

2. Overview
This section motivates the design of iForest using a simple
running example. Consider the file system fragment shown
in Figure 1. The root directory has two entries: an index
file (/index.txt) and a data directory (/data). The di-

253

/

/data
/index.txt

a.txt
b.txt

/data/a.txt
Hello

/data/b.txt
World!

Figure 1. Example directory.

rectory contains a number of text files (/data/a.txt and
/data/b.txt). There is a dependency between the index
and the directory—the former should contain the names of
the files in the latter.

OCaml Implementation. Suppose we wish to use this data
as a simple filestore without using Forest. The first step would
be to identify a type to represent the data in memory and a
function to load data from the file system. For example, we
might use a record type with one field for the index and
another for the data, written here in OCaml:

type rep = { index:string; data:string list }

Next we can write the load function itself:

let load () : rep =
let file_names = read_lines "/index.txt" in
{ index = String.concat "\n" file_names;

data = List.map
(fun f -> read_file ("data/" ^ f))
file_names }

The helper function read_file uses the POSIX API to
load the string contents of a single file, while read_lines
returns a list of strings, one for each line in the file. Running
this function yields the desired result:

{ index = "a.txt\nb.txt";
data = ["Hello"; "World!"] }

However, in addition to being tedious for the programmer,
there are several issues with this implementation. First, it
does not handle all of the error conditions that could arise
in practice—e.g., if one of the files in the /data directory
were missing, the function would raise an exception rather
than returning a partial result and an instructive error mes-
sage. Second, it does not actually implement the complete
functionality of a filestore. To finish the job, we would also
need to write a store function that maps a possibly modified
rep value back to the file system. Note that these issues arise
even with a toy example! They are further exacerbated in the
more complicated scenarios that arise in practice.

Classic Forest Implementation. Forest [4] is a domain-
specific language that provides a collection of type-based
abstractions designed to support programming with filestores.

With Forest, the programmer writes a specification of the
expected structure, contents, and properties of a filestore. The
compiler automatically generates a type for representing the
data in memory, load and store functions, and a suite of other
generic tools. Returning to our running example, we could
use the following Forest specification to specify the structure
of the filestore:

d = dir {
index is "index.txt" :: file;
data is ["data" :: f :: file

| f <- $lines index$] }

To a first approximation, the specification d can be thought
of as a type that specifies the expected structure and contents
of a file system at a given path. The directory construct
(dir {. . . }) specifies that the file system node at the initial
path should be a directory whose contents are modeled by
the nested specifications. The in-memory representation for
a directory is a record—in this case, with fields index and
data that are associated with the representations of the nested
specifications. The path construct ("index.txt :: file)1

navigates to the specified path (index.txt), while the file
primitive (file) specifies that the node at that path should be
a file. The representation for a path is the representation for
its nested specification, while the representation for a generic
file is a string. A comprehension specifies a collection of
values—in this case, the files at paths given in index. The
notation $...$ denotes that the enclosed code comes from
the host language. The representation for a comprehension
is a list. Note the dependency between the two parts of the
specification—a situation that often arises in practice.

Given this specification, the Forest compiler automatically
generates a collection of artifacts including:

• A type d_rep for the in-memory representation:
type d_rep = { index:string; data:string list }

• A type d_md for associated metadata:
type ’a md =

{ num_errors:int;
error_msg:string list;
info:file_info option;
load_time:Time.Span.t;
data:’a }

type d_md =
{ index_md:unit md;

data_md:((unit md) list) md }

• Functions d_load and d_store that map between the
on-disk and in-memory representations:

val d_load : filepath -> d_rep * d_md
val d_store : filepath -> d_rep * d_md -> unit

Unlike the manual implementation described previously,
these functions automatically check for errors and internal

1 The :: operator associates to the right.

254

inconsistencies in the data, returning useful information to the
programmer even when the underlying filestore is malformed.
For example, the following program implements a simple
application that loads the filestore and prints out the name
and size of each file in the data directory:

let (rep,md) = d_load path in
if md.num_errors = 0 then

let go f s = printf "%s: %d\n" f (length s) in
List.iter2 go

(lines rep.index) rep.data
else

let error = String.concat "\n" md.error_msg in
failwith (sprintf "%s" error)

When executed on the same file system as before, we get the
following output:

a.txt: 5
b.txt: 6

In addition, the implementation provides a way to gracefully
handle errors. For example, if the first file were deleted,
creating an internal inconsistency in the data, we would get
the following output,

Failure "/data/a.txt: no such file"

rather than a confusing run-time exception.
In addition to the basic features used in this simple

example, Classic Forest offers a number of other constructs
that are useful for describing real-world filestores. Options
(d option) specify that d may either be present or absent.
The representation is an OCaml option value. Predicates
(d where e) specify that the constraints embodied in
expression e must be satisfied. The representation is a unit
value, but the metadata records an error if the constraints
are not satisfied. Forest also supports recursive specifications.
Finally, because the language is based on a compositional
design it is relatively straightforward to add other operators.

Classic Forest Limitations. Classic Forest’s abstractions
go a long way toward streamlining the task of developing
applications that use file systems for storing persistent data.
However, the language suffers a key limitation that makes it
difficult to use in practice and leads to poor performance:
it lacks mechanisms for controlling cost. If the filestore
contains many large files, then naïvely loading the contents of
those files into memory might exceed the resources available
on the machine. A better alternative would be to allow the
programmer to choose which files should be loaded eagerly
and which ones should be loaded on-demand, but Classic
Forest does not provide a way to make such tradeoffs.

Incremental Forest. iForest is an extension to Classic For-
est that offers new mechanisms for controlling costs associ-
ated with using a given specification. The main innovation in
iForest is a new “delay” construct that can be used to indicate
that a certain sub-specification should be loaded lazily rather
than eagerly. For example, the following specification delays

the loading of every file in the data directory by wrapping
file with angle brackets, iForest’s notation for the delay
construct (shaded here in gray):

d1 = dir {
index is "index.txt" :: file;
data is ["data" :: f :: <file>

| f <- $lines index$] }

From this specification, the iForest compiler generates a
representation type where data contains “cursors” that must
be explicitly forced to obtain the file system data.

type d1_rep =
{ index:string;

data:((string, unit md) cursor) list }

This d_rep type gives the programmer the flexibility to
dynamically load only the files that are needed for the
application. For example, to implement the same functionality
as before, we could use the following program:

d1_new path >>=
load >>= fun (r, md) ->
if md.num_errors = 0 then

let go f cur acc =
load cur >>= fun (s,_) ->
printf "%s: %d\n" f (length s);
acc

in
List.fold_right2 go (lines r.index)

r.data (return ())
else

let error = String.concat "\n" md.error_msg in
failwith (Printf.sprintf "%s" error)

This program is similar to the previous version, but has a few
key differences. First, rather than having to invoke a specific
load function, we use a polymorphic load function that takes
a cursor as an argument. We create a new cursor using the
function d_new. Second, we use a monad to keep track of
the state of cursors as they are used to incrementally navigate
within the file system and load data. The standard monadic
bind operation (>>=) sequences computations.

Now, rather than loading all data files from the file system
at once, we can load them incrementally, in a streaming
fashion. This means that at any given time, the system
only needs to represent the contents of a single data file in
memory, and the garbage collector could reclaim the memory
for previously-loaded files. We could even avoid loading
certain files entirely—e.g., those satisfying some predicate—
by wrapping the go function above in a conditional—which
would have significant performance benefits.

Skins. In general, there can be many different ways of
adding delays to a Forest specification depending on appli-
cation needs. Some applications may wish to process file
system data in larger chunks while others may need fine-
grained control over costs. Requiring programmers to write a
new specification for every combination of delays that might

255

arise would be tedious and create a software maintenance
nightmare. Instead, iForest offers a skin language that pro-
grammers can use to modularly adjust the delay structure
of an underlying “base” specification. The skin language is
based on a “select and transform” paradigm in which the pro-
grammer first navigates the type structure of a given Forest
specification and then manipulates the delays at that node.
The primitive 〈 〉 adds a delay while 〉 〈 removes a delay.
Because the skin language supports recursion and a rich col-
lection of type patterns, it is relatively easy to succinctly
describe many common transformations. For example, the
skin

delayAll = 〈 〉; map(delayAll)

delays every node while the skin

delayFiles = 〈 〉|file + map(delayFiles)

only adds delays at file nodes. The map operator applies
its sub-skin recursively, while the union operator (+) applies
its left sub-skin if possible and otherwise applies its right
sub-skin. The restriction operator (|) applies its sub-skin if a
predicate (file) is satisfied. We have found skins invaluable
in developing iForest applications.

3. Classic Forest, Formally
This section briefly reviews the syntax and semantics of
Classic Forest to set the stage for iForest, which is described
in the next section. Figure 2 (a) gives the syntax of the
language. We assume a set of variables x and expressions
e, and we write t as shorthand for the non-empty sequence
t1, . . . , tn, where t is any syntactic object. Meta-variable s
ranges over specifications.

• Files and Links. Specs file and link describe filestores
with a file and link, respectively, at the current path.
• Paths. Specs e :: s describe filestores where expression
e evaluates to a path that leads to contents described by
s. Note that e may contain variables, which is useful in
dependent specifications, as described below.
• Options. Specs s option describe filestores where either

the current path does not exist or it is described by s.
• Directories. Specs dir {x is s;} describe filestores whose

contents are described by the sub-specifications s1 to sn.
A sub-specification sj may refer to the representation and
metadata for si using xi, provided i is less than j.
• Predicates. Specs s where e describe filestores that are

described by s and where e evaluates to true .
• Comprehensions. Specs [s | x ∈ e] describe filestores

with a collection of contents described by s, where x
ranges over each element of the collection denoted by e.
This generalizes straightforwardly to multiple variables.

The most important artifacts generated from a Forest speci-
fication are the load function, the store function, and the

types of the in-memory representation and metadata. Fig-
ure 2 (b) gives the representation and metadata types for each
specification. The load function takes a path as an argument
and loads data from the file system, returning a representa-
tion and metadata. The store function takes both a path and
a representation-metadata pair and writes them back to the
file system at the given path. These functions enjoy natural
“round-tripping” properties—e.g., storing and loading again
returns the same representation and metadata. See the Classic
Forest paper for formal definitions of the load and store
functions and proofs of these properties [4].

4. Incremental Forest
Incremental Forest (or iForest) extends Forest with a new
delay operator 〈s〉 that prevents loading (and storing) of s
unless explicitly forced by the programmer. This feature gives
programmers precise control over costs without sacrificing
the ability to write declarative filestore specifications.

At first glance, the delay operator appears quite simple.
We extend the syntax of the language with delays, written 〈s〉,
and let the representation and metadata types for 〈s〉 be unit
and unit md respectively to reflect the fact that no processing
occurs when a delayed specification is used. However, while
the core elements of this design are basically right, there are
a few subtle design issues that need to be addressed to make
delays usable for programmers.

Cursors. The first issue with the design just described
is that it forces programmers to manually invoke load
functions for each delayed sub-specification forced by their
application. Doing this correctly is tedious for programmers
since they will have to remember the names of the correct
load functions to invoke. To illustrate, recall the running
example from Section 2 and suppose that we decide to add a
delay to the comprehension:

d2 = dir {
index is "index.txt" :: file;
data is <["data" :: f :: file

| f <- $lines index$]> }

If we invoke d2_load, we get a representation:

{ index = "a.txt\nb.txt"; data = () }

Then, to obtain the contents of the files in the data directory,
we have to invoke the load function for the comprehension.
But now there is a problem: the comprehension does not have
a name so the Forest compiler does not generate a top-level
function for it! We could modify the compiler to generate
load and store functions for each delayed specification, but
the programmer would still need to remember the name of
the function to invoke as well as the file system path to supply
to that function.

To address this problem, we introduce cursors, which
encapsulate the load and store functions associated with
iForest specifications. The Forest run-time system defines

256

x ∈ Var Variables
e ∈ Exp Expressions
s ::= file Files
| link Links
| e :: s Paths
| s option Options
| dir {x is s;} Directories
| s where e Predicates
| [s | x ∈ e] Comprehensions

s R[[s]] M[[s]]

file string unit md

link filepath unit md

e :: s R[[s]] (filepath×M[[s]]) md
s option R[[s]] option (M[[s]] option) md

dir {x is s;} {x : R[[s]];} {x :M[[s]];} md
s where e R[[s]] (boolean×M[[s]]) md
[s | x ∈ e] R[[s]] list (M[[s]] list) md

(a) (b)

Figure 2. Classic Forest: (a) syntax; (b) representation and metadata types.

s ::= . . .
| 〈s〉 Delay

s R[[s]] M[[s]]

〈s〉 (R[[s]]×M[[s]]) cursor unit md

(a) (b)

Figure 3. iForest: (a) syntax; (b) representation and metadata types.

a parameterized type for cursors (parameterized on the rep-
resentation and metadata types) and polymorphic load and
store functions.

type (’r,’m) cursor
val load : (’r, ’m) cursor -> ’r * ’m
val store : (’r, ’m) cursor -> ’r * ’m -> unit

Note that unlike the specification-specific load and store
functions generated by the Classic Forest compiler, these
functions can be used with cursors of any type. To construct
cursors, the iForest compiler generates a new function for
each top-level specification s:

val s_new : filepath -> (s_rep, s_md) cursor

Returning to our example, if we invoke the load function:

load (d2_new "/")

we now get a representation

{ index = "a.txt\nb.txt"; data = cur }

where cur represents the cursor for the delayed comprehen-
sion, which can be loaded:

load cur

to yield the representation:

["Hello"; "World!"]

Cursors encapsulate the run-time details related to incremen-
tal navigation of a filestore, which greatly simplifies applica-
tions written using iForest. To minimize overhead and support
streaming computations using iForest, cursors do not cache
results. We plan to investigate alternative approaches (e.g.,
call-by-need semantics) in the future.

Monadic Interface Another issue with the simple design
for iForest described above is that it forces results to be

computed incrementally, which complicates applications.
For representations and metadata this is unavoidable—being
able to operate incrementally is precisely why we designed
iForest!—but it would be convenient if the run-time would
aggregate other kinds of data automatically. In particular, we
would like to be able to choose when data will be produced
incrementally and when it will be aggregated.

To that end, we borrow a standard approach to encap-
sulating effectful computation from functional languages.
Specifically, we define a monadic interface for iForest’s load
and store functions. As an example, suppose we extend the
load function to additionally return the number of file system
nodes accessed during loading, giving it the type:

val load : (’r,’m) cursor -> ’r * ’m * int

Now suppose we invoke the load function using the top-level
and delayed cursors in sequence:

let cur = d2_new "/" in
let rep1,md1,n1 = load cur in
let rep2,md2,n2 = load r1.data in
...

Note that we have to track n1 and n2 explicitly. We would
have to compute their sum to obtain the desired result—an
error-prone program structure, especially in larger applica-
tions. Instead, we can endow iForest with a monadic interface:

val s_new : filepath ->
((s_rep, s_md) cursor) CursorM.t

val load : (’r,’m) cursor -> (’r * ’m) CursorM.t
val store : (’r,’m) cursor -> (’r * ’m) ->

unit CursorM.t

Module CursorM is a standard state monad that encapsulates
the costs (represented as integers) associated with using
iForest cursors:

257

module CursorM = struct
type ’a t = int -> (’a * int)
let return (x:’a) : ’a t =

fun n -> (x,n)
let bind (m:’a t) (f:’a -> ’a t) : ’a t =

fun n ->
let (x,n’) = m n in
f x n’

let run (m:’a t) : ’a * int = m 0
end

With this interface (and a standard OCaml syntax extension
for monads), we can re-write our example as follows:

d2_new "/" >>= fun cur ->
load cur >>= fun (rep1,md1) ->
load rep1.data >>= fun (rep2,md2) ->
...

Now costs are encapsulated within the monad, and the aggre-
gate value will be returned when we run the computation.

We can also use CursorM to encapsulate other kinds of
state. For example, when using the store function incremen-
tally, it is convenient to automatically aggregate the opera-
tions that will ultimately be executed on the file system rather
than asking the programmer to keep track of them by hand.
In the future, we plan to explore using CursorM as the basis
for building a transactional version of iForest, in the style of
Haskell’s Software Transactional Memory [8].

Dependencies. Another issue that arises in iForest concerns
dependencies. To illustrate, suppose we revise our running
example so that both index and data are delayed:

d3 = dir {
index is <"index.txt" :: file>;
data is <["data" :: f :: file

| f <- $lines index$]> }

As written, this program will not compile because index
is a cursor, not a string, which is the type expected by the
lines function. To fix this error, the programmer would
have to explicitly load the cursor and apply lines to the
resulting string. However, we think this approach would be
unacceptable: programmers should never have to modify a
specification to accomodate delays (modulo the addition or
deletion of delays). Besides being intuitive for programmers,
this principle underpins our skin language (see Section 6).
Hence, we designed iForest so that loading any cursor c
automatically loads any other cursors upon which c depends.
This design decision has a few interesting consequences:

• Any expressions occuring in a specification are written
against a fully-forced specification.
• It is possible to insert useless delay annotations:
d4 = dir {

index is <"index.txt" :: file>;
data is ["data" :: f :: file

| f <- $lines index$] }

s C[[s]] π

file cfile(v)

where v = (|file|) π
link clink(v)

where v = (|link|) π
e :: s C[[s]] (π@JeK)

s option

{
0 if None = (|s option|) π
C[[s]] otherwise

dir {x is s;} C[[s1(ρ1)]] π · . . . · C[[sn(ρn)]] π · cdir(x)

where {x = v} = (|dir {x is s;}|) π
and ρi = [v1/x1, . . . , vi−1/xi−1]

s where e C[[s]] π
[s | x ∈ e] C[[s[vi/x]]] π · . . . · C[[s[vk/x]]] π

where [v1, . . . , vk] = JeK

〈s〉 0

Figure 4. iForest cost model.

Here, the delayed index is immediately forced whenever
the specification is loaded. The iForest compiler accepts
this specification, but emits a warning to the programmer.
For simplicity, we will assume that specifications do not
contain useless delays in the rest of this paper.
• Because cursors do not currently cache data in our design,

dependencies may be loaded multiple times.

Another issue related to dependencies concerns the store
function. In general, the programmer may invoke store with
arguments that do not satisfy the specification’s dependencies.
iForest currently does not check dependencies in the store
function instead requiring the programmer to check them
using the load function. We plan to design a mechanism to
check store dependencies in the future.

5. Cost Model
iForest is designed to enable programmers to make precise
tradeoffs between simplicity and performance in applications
that store persistent data using the file system. To facilitate
reasoning about costs, we developed a formal model of the
costs associated with using a given specification. In general,
there may be a variety of costs that affect performance
including the total amount of memory used, the total amount
of time needed to load data into memory, the number of file
system paths accessed during loading, and so on. We designed
the cost model to be general—it is able to handle all of these
examples, and many more.

Formal Definition. The cost model is parametrized on a
partially ordered monoid C = 〈C, ·,0,v), and a family of

258

cost functions, cτ , one for each primitive τ (i.e., files, links,
and directories). We let π range over file system paths and
let @ denote the concatenation operator on paths. We write
v = (|s|) π if loading with s at π yields v. Similarly, we write
v = JeK if evaluating e yields v. We write s[v/x] for the
substitution of v for x in s. We let ρ range over substitutions
and write s(ρ) for the application of ρ to s.

Figure 4 presents the formal definition of the cost model,
using the additional notation just defined. The cost C[[s]] for
each specification s is defined with respect to a path π. The
cost for a file or link specification (file or link) is obtained
by applying the corresponding primitive cost function to
the representation produced by the load function. The cost
for a path specification (e :: s) is simply the cost for s after
updating π according to e. The cost for an option specification
(s option) is 0 if the file system does not have a node at
π and the cost for s otherwise. The cost for a directory
is obtained by combining the costs for each field in the
directory, as well as the primitive cost function for directories
using the monoid operation (·). However, additional care is
needed to handle data dependencies: for each field xi with
representation vi, we substitute vi for xi in all subsequent
fields. The cost for a predicate specification (s where e) is
simply the cost for s. Finally the cost for a comprehension is
obtained by combining the costs for s with vi substituted for
x, for each i from 1 to k.

Properties. Given a few natural constraints, we can prove
a monotonicity property for the cost model: if more delay
annotations are added to a given specification, then cost
monotonically decreases. Intuitively, this result holds because
the iForest run-time will access fewer file system nodes.
Writing s ≺ s′ to indicate that the delays in s are a subset of
those in s′, we have the following theorem:

Theorem 1 (Delay Monotonicity). Let C = (C,0, ·,v) be
a partially ordered monoid, and let s and s′ be specifications.
If s ≺ s′ and ∀x, y, z ∈ C. x · z v x · y · z, then:

C[[s′]] π v C[[s]] π

The reason for the requirement (x · z v x · y · z) is that any
sub-specification may be delayed in a dir specification. It
is important that cost does not increase just because such a
delayed specification happens to lie in the middle of a group
of operations. There are stronger formulations that may seem
more intuitive. For example, this property can be derived if
operator · is commutative and x v x ·y. We prefer to impose
this slightly less natural but weaker requirement.

Examples. iForest’s cost model can handle a wide variety
of examples including each of the following:

• C = (N, 0,+), v is ≤ on the natural numbers and cτ f
is the file size for links and files and 0 for directories: The
total cost of a specification will be the sum of the sizes of
all files loaded.

h ::= 〈 〉
| 〉 〈
| ∼
| _
| h option

| {h}
| [h]
| h|Φ
| h1 + h2
| h1;h2
| map(h)
| n(h)

s ∈Spec
h ∈Skin
e ∈Expr
n ∈Fields
Φ ∈ (DTree→ B)

J·Kh : Skin→ DTree⇀ DTree
dtreeof : Spec→ DTree
apply : Spec→ DTree⇀ Spec

Figure 5. Skin language syntax.

• C = (R+, 0,+), v is ≤ on the real numbers and cτ f is
the amount of time it took to load the file or link and 0 for
directories (since loading all its components will already
be taken into account): The total cost of a specification
will be the sum of the load times of every file.
• C = (N, 0,+), v is ≤ on the natural numbers and
cfile f = 1 and clink f = cdir f = 0: The total cost of
a specification will be the number of files (not including
links) loaded.
• C = (M, ∅,∪) where M is a multiset of files, v is the

subset relation on multisets and cτ f is the name of the
file, link, or directory: The total cost of a specification will
be the multiset containing the names of everything loaded.

Note that all of these examples have the monotonicity prop-
erty of Theorem 1. As discussed in Section 4, given a cost
model, the cursor monad aggregates these costs automatically.
Our current implementation provides a library that includes
each of the four examples shown above.

6. Skins
iForest’s delay construct allows programmers to control the
costs associated with loading and storing file system data.
However, a significant practical problem remains. Many
iForest specifications are used by more than one application
(or by more than one component of the same application) and
these different clients can require loading different portions
of the filestore. Depending upon the details of the application,
different delays may be appropriate.

Using the features we have introduced so far, iForest
programmers would have three options, all of which would
be unattractive:

1. They could only delay parts of the specification that
are not used by any application, foregoing many of the
benefits of iForest.

2. They could delay every node, cluttering the application
with a lot of extra code to force explicit loading.

259

3. They could copy the iForest specification and customize
the delays for each application, duplicating code and
creating a maintenance nightmare.

iForest’s skins provides a better, more principled way to
address these problems.

Our design for skins starts from the observation that many
specifications have the same underlying structure and differ
only in where delays occur. A skin describes the desired
pattern of delays needed for a particular application. The
programmer can apply a skin to a specification to obtain a
new specification that has the same structure but different
delays. Most skins make assumptions about the structure of
the specifications they can be applied to. Consequently, we
define a type system for iForest specifications and skins to
check their compatibility. The type system is based on fairly
standard constructs for tree-structured data; the details are
given in Appendix C.

Figure 5 defines the syntax of the skin language and gives
the types of the most important operations on skins. The
delay skin (〈 〉) adds a delay at the top of the specification,
the un-delay skin (〉 〈) removes a delay, and the invert skin
(∼) toggles a delay. The identity skin (_) does nothing.
The option (h option), directory ({h}), and comprehension
([h]) skins modify their sub-specifications. The predicate
skin (h|Φ) applies h only if Φ is satisfied. The union skin
(h1 + h2) applies h1 if possible and otherwise applies h2.
The composite skin (h1;h2) applies h1 and h2 in sequence.
The map skin (map(h)) applies h to each sub-specification.
Finally, the match skin (n(h)) applies h to a directory field
specified by n.

To a first approximation, a skin can be thought of as denot-
ing a tree transformation that never modifies the underlying
structure of the tree. We can enforce this property using the
notion of a delay tree, which captures the paths in the specifi-
cation where delays occur. Formally, a skin denotes a (partial)
function on delay trees (J·Kh). We can extract a delay tree
from a specification (dtreeof) and we can apply a delay tree
to a specification to obtain a new specification (apply).

Examples. To illustrate the use of skins, consider the Forest
specification for the running example we have been using
throughout this paper:

d = dir {
index is "index.txt" :: file;
data is ["data" :: f :: file

| f <- $lines index$] }

In earlier sections, we have explored how adding delays in
four different configurations would affect this specification.
Now we look at how users could have generated these variants
using skins instead of copying and pasting:

d1Skin = {_,[<>]}
d2Skin = data(<>)
d3Skin = {<>,<>}
d4Skin = {∼,_}

To get the four variations defined previously, we can apply
these skins to the base specification as follows:

d1 = d @ d1Skin
d2 = d @ d2Skin
d3 = d @ d3Skin
d4 = d @ d4Skin

Skin d1Skin modifies d by first applying the identity skin
(_) to the first part of the directory, then applying the delay
skin (〈 〉) inside the comprehension of the second part of the
specification, generating:

d1 = dir {
index is "index.txt" :: file;
data is ["data" :: f :: <file>

| f <- $lines index$] }

Note that there is no distinction between delaying the whole
path construct, "data" :: f :: file, and just file.
d2Skin modifies d by matching on data and then apply-
ing the delay skin. This matching operation can be done on
any named field in a directory. The result is:

d2 = dir {
index is "index.txt" :: file;
data is <["data" :: f :: file

| f <- $lines index$]> }

Skin d3Skin simply delays both parts of the directory:

d3 = dir {
index is <"index.txt" :: file>;
data is <["data" :: f :: file

| f <- $lines index$]> }

Skin d4Skin flips the delay annotation on the first part of the
directory (i.e. the index), which becomes delayed since it was
not previously, and we end up with:

d4 = dir {
index is <"index.txt" :: file>;
data is ["data" :: f :: file

| f <- $lines index$] }

Finally, consider a new set of delay annotations on d:

d5 = dir {
index is "index.txt" :: <file>;
data is ["data" :: f :: <file>

| f <- $lines index$] }

There is a useful skin idiom we can use to achieve this result.
The idiom delays everything with a particular type, usually a
constant. In this instance, the skin would look as follows:

delayFiles = <>|file + map(delayFiles)

This skin uses the predicate form (h|Φ), which allows users
to selectively apply a skin only if the underlying specifica-
tion satisfies a predicate Φ. In this case, we use the built-in
predicate file, which tests whether the type of the specifi-
cation is a file. Appendix C shows the collection of built-in
predicates. Skin delayFiles also uses the union operator.
If the description it is applied to is a file, then it simply

260

delays it. Otherwise, it uses the map construct to walk down
one layer of structure (whether option, comprehension, or
directory) and applies its argument there. More formally,
map(h) desugars into [h] + h option+ {h, .., h}+ _. Skin
delayFilesmaps itself, which means it will apply itself to
every sub-specification (or do nothing if it is at a leaf node).
If we apply delayFiles to d, we get d5.

Both the delayAll skin (shown in Section 2) and the
delayFiles skin are good examples of skin idioms that
are useful in many different applications and illustrate the
expressivity of the skin language.

Types. We designed a standard type system for tree-
structured data to check compatibility between skins and
specifications (or more specifically the delay trees derived
from specifications). As a side benefit, the type system gives
us a convenient set of predicates for applying delays based
on the types of the nodes in the delay tree. The Φ in h|Φ is
often given by a type in practice.

Since delays are annotations, they do not change the type
of delay trees: types are constant with respect to skin appli-
cation. This property greatly simplifies the semantics of the
language and reasoning about how skins will affect a speci-
fication. For example, composing skins reduces to applying
them in order. Moreover, skins that have the same type can be
composed in either order, without failing. Similarly, deciding
which branch of a union to apply can be determined from the
type of the specification.

Properties. We have proven a variety of useful properties
about skins, types, and their relationships. Many of these
properties follow by construction. Appendix D shows eight
theorems and nine lemmas including the soundness and
completeness of the type system, closure under composition
for skin application, and various algebraic properties. We
have proven these properties using the formal core language
specified in Appendix C.

7. Experience
We built prototype implementations of iForest and skins,
as well as a version of Pads [2], as embedded languages
in OCaml. Informally, Pads is to single files what Forest
is to filestores. Our implementation is approximately 4600
lines of OCaml extension points (or PPX syntax extensions)
and OCaml code. We developed an iForest specification for
SWAT [13] (Figure 7 (a)), and we built several applications
in collaboration with the Cornell Soil and Water Lab, which
is led by Todd Walter. We conducted experiments showing
skins can speed up load times by approximately 7x.

SWAT Overview. The Soil and Water Assessment Tool
(SWAT) [13] is a watershed scale quasi-spatially distributed
hydrologic model that is used to quantify the impact of land
management practices. One use of SWAT is to simulate the
effects on local rivers and streams of changing the crops and
fertilizers used on farms, or changing landuse, for example

Figure 6. The Fall Creek watershed

by replacing a forest with a housing development. In an
initialization of SWAT, the area of interest is split into a
number of non-overlapping, but contiguous subbasins, which
are further broken down into Hydrologic Response Units
(HRUs). HRUs are also non-overlapping, but usually not
contiguous. However, the entirety of an HRU is identical with
respect to its land use, soil types, and slope classifications
even if the areas represented within are potentially far apart.
Note that an HRU can not be spread over multiple subbasins.
In our examples, we used a SWAT initialization from the Fall
Creek watershed in Ithaca, NY, pictured in Figure 6.

SWAT Filestore. Like many similar tools, SWAT stores
its persistent data using a structured filestore. A top-level
directory TxtInOut contains a master index file file.cio
that refers to a large number of data files (around 10,000 in our
examples), identified by specific names and extensions. The
data files contain a variety of information about the watershed
including general features such as snowfall temperature, soil
evaporation factor, and surface runoff time as well as features
specific to each sector of land in the model such as the type
of crop, fertilizer, and irrigation. Figure 7(b) depicts the
various components in a SWAT filestore and the dependencies
between them. Note that the names of certain nodes (*.hru)
are parametrized to indicate that they are instantiated multiple
times, one for every sector of land in the model. A typical
SWAT filestore has thousands of files with tens of megabytes
of data or more, depending on the level of detail in the model.

261

swatIn = dir {
cio is "file.cio" :: cioFile;
fig is $cio.figFile.str$:: figFile;
cst is $cstFile cio$:: file option;
wnd is $slrFile cio$:: wnd option;
rh is $rhFile cio$:: rh option;
slr is $slrFile cio$:: slr option;
bsn is $basinFile cio$:: bsn;
plant is $plantFile cio$:: crop;
till is $tillFile cio$:: till;
pest is $pestFile cio$:: pest;
fert is $fertFile cio$:: fert;
urban is $urbanFile cio$:: urban;
pcps is [f :: pcp | f <- $pcpFiles cio$];
tmps is [f :: tmp | f <- $tmpFiles cio$];
subs is [f :: sub | f <- $subFiles fig$];
rtes is [f :: rte | f <- $rteFiles fig$];
swqs is [f :: swq | f <- $swqFiles fig$];
hrus is [f :: hru | f <- $allHruFiles subs$];
mgts is [f :: mgt | f <- $allMgtFiles subs$];
sols is [f :: sol | f <- $allSolFiles subs$];
chms is [f :: chm | f <- $allChmFiles subs$];
gws is [f :: gw | f <- $allGwFiles subs$];
seps is [f :: sep | f <- $allSepFiles subs$];
wgns is [f :: wgn | f <- $allWgnFiles subs$];
pnds is [f :: pnd | f <- $allPndFiles subs$];
wuss is [f :: wus | f <- $allWusFiles subs$] }

file.cio

*.tmp

*.pcp

basins.bsn

plant.dat

fig.fig

till.dat

pest.dat

fert.dat

urban.dat

*.rte

*.swq

*.sub

*.wgn

*.pnd

*.wus

*.hru

*.mgt

*.sol

*.chm

*.gw

*.sep

(a) (b)

Figure 7. SWAT filestore: specification and dependencies. The constants in the specification that are not file are Pads
specifications describing the contents of the individual files.

Example Application: Calibration. An important first step
in any SWAT application is to calibrate the model to ensure
it accurately reflects watershed features. To do this, a sci-
entist explores the parameter space, adjusting values within
specified bounds to optimize a global objective such as Nash–
Sutcliffe efficiency [11]. Concretely, calibration entails modi-
fying input parameters stored in ASCII text files, (re)running
the SWAT executable to compute derived data, and then com-
paring the output values, which are also stored in ASCII text
files. This process is iterated many times until the optimal set
of parameters, or a close approximation, is found.

Example Application: Management. After calibrating,
many applications can be built using SWAT. One common
use is quantifying the impact of various land management
decisions on a watershed [5–7, 12, 16]. This involves encod-
ing management decisions as inputs to the model and then
interpreting model output. Operationally, this application
is similar to calibration in that the scientist modifies input
parameters stored in ASCII text files, runs SWAT, and then
looks at the output values in more ASCII text files.

Forest SWAT Specification. Forest facilitates implement-
ing these kinds of SWAT applications. Figure 7(a) gives a
Forest specification for SWAT filestores. The top-most spec-
ification is a directory that matches the top-level TxtInOut

directory. The first entry is for file.cio, which serves as
the master index for the filestore. The rest of the entries use
options and comprehensions to describe the structure of the
remaining files. Note that dependencies can be expressed by
simply referring to values—e.g., the list of PCP files pcps
depends on the values in the representation of file.cio.

iForest SWAT Specifications. SWAT is a large model with
a host of inputs and outputs, but a given application often
needs to inspect only a small set of files. The relevant files
vary from application to application, however. Using skins,
scientists can restrict their attention to the portion of the
data they are interested in while sharing a single iForest
description across many different applications.

Results in Brief. While writing an initial specification can
be time consuming because of the myriad details (see the
SWAT manual[14]), once we had the specification, writing
applications using it was generally straightforward. We found
the skin language expressive enough to describe everything
necessary in a few lines. Designing a skin typically required
only a few minutes. We found reasoning about skins to be
mostly straightforward.

We ran experiments on data from the Fall Creek watershed
in Ithaca, NY on a cluster of 24 Dell r620 servers, each with
two eight-core 2.60 GHz Xeon CPU E5-2650 processors and

262

Field IP+OP ILU+OLU ILU OLU NoSkin
Avg 0.15 20.92 21.65 144.28 145.01
Stdev 0.005 5.07 5.07 27.03 27.03

Figure 8. Load times for SWAT input-output directories.

64GB of RAM running Ubuntu 14.04.1 LTS. We report all
times in seconds unless otherwise indicated. We found that
iForest yields speed-ups of approximately 7x for loads.

7.1 Microbenchmark
To get a sense of the performance improvements possible
with skins, we ran a microbenchmark that quantified the time
to load data from a SWAT directory using several different
skins (Figure 8). We used the specifications in Figure 9 with
5 different levels of skinning to load the input and output files
of a 95MB SWAT directory containing 9771 files:

• IP+OP, which used the swatIP and swatOP specifications
to load only the dependencies required for the rest of the
skins. IP and OP stand for Input/Output with Predicates.
• ILU+OLU, which used the swatILU and swatOLU speci-

fications to load exactly what is used in the land manage-
ment application. ILU and OLU stand for Input/Output
with LandUse.
• ILU, which used the swatILU and swatOut specifica-

tions; swatOut is an entirely undelayed specification of
the seven output files of a SWAT execution.
• OLU, which loaded the swatIn and swatOLU specifica-

tions respectively. swatIn is entirely undelayed.
• NoSkin, which loaded the swatIn and swatOut specifi-

cations.

Figure 8 shows the results of the experiment, reporting the
average and standard deviation of the various loading times
in seconds. The ILU+OLU skinned version is roughly 7 times
faster than the NoSkin unskinned version on average. The
error bars show standard deviations in all charts.

7.2 Calibration
Next, we built an application that automatically calibrates a
SWAT model with respect to a set of parameters. As discussed
above, this is a critical first step in any SWAT application.

(* skins *)
delayAll = <>;map(delayAll)
predSkin = delayAll;fig(><);subs(><;[><]);

cio(><)
inCalib = predSkin;bsn(><);gws(><;[><]);

hrus(><;[><])
outCalib = delayAll;outRch(><)
inLU = predSkin;mgts(><;[><])
outLU = delayAll;outStd(><)
(* specifications *)
swatICB = swatIn @ inCalib
swatOCB = swatOut @ outCalib
swatILU = swatIn @ inLU
swatOLU = swatOut @ outLU
swatIP = swatIn @ predSkin
swatOP = swatOut @ delayAll

Figure 9. SWAT Skins and the resulting iForest speci-
fications. The swatIn specification appears in Figure 7;
swatOut is not shown.

The calibration used by our colleagues attempts to match the
daily outflow of water shown in the model with the ground
truth data, measured by a US Geologic Survey gauging
station. Accuracy is measured using the Nash-Sutcliffe Model
Efficiency (NSE) Coefficient [11],

E = 1− ΣTt=1(Qto −Qtm)2

ΣTt=1(Qto − Q̄o)2

where Qto is observed discharge, Qtm is measured discharge,
Q̄o is the mean of observed discharges, t denotes time, and
E ranges from 1 to −∞. If E = 1, the model perfectly
predicts the observations (which is extremely unlikely to
arise in practice). If E < 0, then we would have done better
to simply predict the averge of the observed data at every
point. Generally, E > 0.5 is considered satisfactory [10].

Figure 10 lists a set of parameters that are relevant for
calibrating the Fall Creek watershed, showing that the search
space is extremely large. In our application, we only modified
4 parameters, chosen because they are especially sensitive:
ALPHA_BF, GW_DELAY, SURLAG, and ESCO. We picked
6 points per parameter, distributed relatively evenly over the
search space, and ran calibration. Specifically, we wrote all
combinations to the input files, running SWAT with each
combination, and recorded the best values.

With this approach, we achieved an NSE of 0.41. It is
worth noting that when we combined the best values for our
four parameters with the best values for all other parameters
previously found by hydrologists and reran SWAT, we got an
NSE of 0.625. This value is slightly better that the value of
0.621 that our colleagues had previously obtained.

Figure 11 gives the running time of our calibration appli-
cation. The majority of the time comes from running SWAT,
which takes ˜2.5 minutes per run. This executable is a black
box so we can do nothing to improve it. We see smaller im-
provements than the speedup measured earlier, even in Non-

263

Parameter Min Max Init Best
GW_DELAY 0.50 1000.00 31.000 82.410
ALPHA_BF 0.10 1.00 0.0480 0.152
GWQMN 0.00 500.00 0.0000 29.154
GW_REVAP 0.00 0.20 0.0200 0.192
REVAPMN 0.00 500.00 1.0000 443.955
RCHRG_DP 0.00 1.00 0.0500 0.107
SFTMP -5.00 5.00 1.000 -0.424
SMTMP -5.00 5.00 0.500 3.286
SMFMX -5.00 5.00 4.500 1.843
SMFMN -5.00 5.00 4.500 3.611
TIMP 0.00 4.00 1.000 0.553
SURLAG 0.00 15.00 4.000 0.246
ESCO 0.10 1.00 0.950 0.583
EPCO 0.00 1.00 1.000 0.955
NSE -∞ 1.00 -1.034 0.621

Figure 10. Calibration parameters.

Unskinned Total Time Non-SWAT time SWAT time
Average 1054.89 171.29 883.60
Stdev 16.16 12.72 8.19
Skinned
Average 943.17 68.94 874.23
Stdev 6.02 2.65 5.36

Figure 11. Calibration experiment.

SWAT time, presumably because the program is no longer
just loading. Even so, the skinned version is notably faster.

7.3 Land Management
Another common use of SWAT is to simulate the impact of
various land management decisions, such as which crops to
plant and when, which water sources to irrigate from and how
much, or what fertilizers to use and when, etc. [5–7, 12, 16].
This is done by modifying management input files describing
which decisions should be simulated in the model. There is
one such file for each HRU in a SWAT directory.

To show that iForest can handle such situations, we built
an application that systematically changes some management
input files, runs SWAT, and then looks at selected output pa-
rameters to observe the results. Specifically, we changed the
fertilizer to Fresh Dairy Manure, ran SWAT, and then looked
at how the amount of Organic Nitrogen in the water varies
with the amount of fertilizer. This approach is sufficiently

Unskinned Total Time Non-SWAT time SWAT time
Average 1766.13 138.48 1627.64
Stdev 24.26 23.20 6.55
Skinned
Average 1668.72 25.25 1643.47
Stdev 11.38 6.07 8.59

Figure 12. Land management experiment.

generic that only small changes would be required to switch
what parameters to change, how to change them, where to
change them, and what output value to track.

Figures 12 and 13 show our results. The first figure reports
timing information, showing that we obtained a 5.5x speedup
in non-SWAT time. The second depicts how organic nitrogen
in the stream increases as we use more Fresh Dairy Manure.
The curve is not smooth because the HRUs behave differently.

8. Related Work
The work in this paper builds upon earlier work on the design
of Forest [4]. iForest differs from Forest in the introduction
of delays and skins. The original version of Forest was imple-
mented in Haskell and uses Haskell’s inherent laziness to try
to avoid loading unnecessary portions of the filestore. This
approach required using unsafe extensions of the language,
however, because file system manipulation has inherent side
effects—i.e., in the I/O monad. In contrast, iForest is imple-
mented in OCaml and requires users to explicitly manage
loading of filestore components using delays and skins.

iForest leverages work from the Pads project [2, 3]. Pads
uses data-dependent type declarations to describe the struc-
ture and invariants of data in a single file. From such speci-
fications, the Pads compiler generates types for parsed data
and a suite of data-processing tools. The most significant
difference between Pads (and other parser generators) and
Forest is that Pads generates infrastructure to process individ-
ual files whereas iForest generates infrastructure to process
entire filestores. Pads does not support incremental loading.

As with Forest, iForest shares the goal of systems like
Microsoft’s LINQ [9] and F#’s Type Providers [15] of making
data-oriented programming easier. iForest differs from both
LINQ and Type Providers in that neither of those systems
support the declarative specification of filestores. XML-
based languages like XFiles [1] do allow the declarative

264

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 100 200 300 400 500 600 700

O
rg

a
n
ic

 N
it

ro
g
e
n
 (

kg
/h

e
ct

a
re

/y
e
a
r)

Number of HRUs Changed To Organic Fertilizer

SWAT Land Use

Figure 13. Increase in organic nitrogen as more HRUs use
Fresh Dairy Manure fertilizer.

specification of filestores, but they are not tightly integrated
into a host language, and so they do not provide the easy
access to filestore data that we seek to provide.

9. Conclusion
We presented Incremental Forest, a domain-specific language
that extends Forest [4] with a new delay construct to enable
processing file system data incrementally. We described
the delay construct as well as a cursor type for encoding
it. We introduced a generic cost model and showed that
costs monotonically decrease as delays are added, subject
to natural conditions. We described a skin language, which
allows programmers to induce different delay annotations
in specifications without rewriting them. We described a
type system to ensure skins are only applied to compatible
specifications and we proved the type system sound and
complete. Finally, we described case studies based on the Soil
and Water Assessment Tool (SWAT), which hydrologists use
to study watersheds. Specifically, we discussed a calibration
application and a management application we have written
using the iForest SWAT specification. We also reported
performance results on a microbenchmark showing a speedup
of 7x when loading with a skin versus loading naïvely.

Acknowledgments
The authors wish to thank the Cornell PLDG, Don Syme,
David Walker, and the anonymous OOPSLA reviewers for
helpful comments on an earlier draft of this paper. Our work
is supported in part by the National Science Foundation under
grants CCF-1253165 and CNS-CNS-1413972, and gifts from
Cisco, Facebook, Fujitsu, and Google.

References
[1] S.-C. Buraga. An XML-based semantic description of dis-

tributed file systems. In RoEduNet, 2003.

[2] K. Fisher and R. Gruber. PADS: A domain specific language
for processing ad hoc data. In PLDI, June 2005.

[3] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. J. ACM, 57, February 2010.

[4] K. Fisher, N. Foster, D. Walker, and K. Q. Zhu. Forest: A
language and toolkit for programming with filestores. In ICFP,
2011.

[5] M. Gabriel, C. Knightes, E. Cooter, and R. Dennis. Evaluating
relative sensitivity of SWAT-simulated nitrogen discharge to
projected climate and land cover changes for two watersheds
in North Carolina, USA. Hydrological Processes, 2015.

[6] K. K. Garg, L. Bharati, A. Gaur, B. George, S. Acharya,
K. Jella, and B. Narasimhan. Spatial mapping of agricultural
water productivity using the SWAT model in Upper Bhima
Catchment, India. Irrigation and Drainage, 61(1), 2012.

[7] B. Guse, M. Pfannerstill, and N. Fohrer. Dynamic modelling
of land use change impacts on nitrate loads in rivers. Environ-
mental Processes, 2(4), 2015.

[8] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP, 2005.

[9] LINQ: .NET Language-Integrated Query. LINQ: .NET
language-integrated query. http://msdn.microsoft.com/
library/bb308959.aspx, Feb. 2007.

[10] D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner,
R. D. Harmel, and T. L. Veith. Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations.
Transactions of the ASABE, 50(3), 2007.

[11] J. Nash and J. Sutcliffe. River flow forecasting through
conceptual models part I — A discussion of principles. Journal
of Hydrology, 10(3), 1970.

[12] T. S. Ngo, D. B. Nguyen, and P. S. Rajendra. Effect of land
use change on runoff and sediment yield in Da River Basin of
Hoa Binh province, Northwest Vietnam. Journal of Mountain
Science, 12(4), 2015.

[13] SWAT. Soil and Water Assessment Tool. http://swat.tamu.
edu.

[14] SWAT IO Documentation. SWAT Input/Output Doc-
umentation. http://swat.tamu.edu/documentation/
2012-io/, 2012.

[15] D. Syme. Looking ahead with F#: Taming the data deluge.
Presentation at the Workshop on F# in Education, Nov. 2010.

[16] C. B. Zou, L. Qiao, and B. P. Wilcox. Woodland expansion
in central Oklahoma will significantly reduce streamflows – a
modelling analysis. Ecohydrology, 2015.

A. iForest Core Syntax
This section introduces a core calculus that we will use to
prove a number of theorems about the language. The calculus
extends the Forest core calculus [4] with a delay construct.
Its syntax is as follows:

Paths r ::= · | r /u
Contents T ::=File u | Link r
File systems F ::= {|r1 7→ (a1, T1), .., rn 7→ (ak, Tn) |}
Specifications s ::= kτ2τ1 | e :: s | s? | (x:s1, s2)

| P (e) | [s | x ∈ e] | Delay(s)

Meta-variable u ranges over string constants, while meta-
variable a ranges over file system attributes (e.g., the data

265

returned when using the stat command: size, permissions,
owner, time of last modification, etc.). The iForest surface
language can be encoded into the core calculus as follows:

• file and link are translated to constants kτ2τ1 , where
types τ1 and τ2 are appropriate representation and meta-
data types.
• s option is translated to s?
• dir {x is s;} is translated to

(_:dirunitunit , (x1:s1, (x2:s2, (. . . (xn−1:sn−1, sn)))), where
the first component of the pair is a primitive that checks if
the current node is a directory.
• s where e is translated to (this:s, P (e)). As in the surface

language, this form gives the predicate expression access
to the results of loading specification s through the special
variable this.
• 〈s〉 is translated to Delay(s)

The translations of other forms are straightforward.

B. iForest Semantics
This section defines the formal semantics of iForest and
proves several round-tripping properties.

Figure 14 (a) gives the representation and metadata types
for each specification. The type τ md denotes the pair (bool∗
τ), where the boolean value indicates if an error occurred
during loading. We write τ cur for the type of a cursor that
returns τ when forced. Figure 14 (b-c) define the load and
store functions for each specification. Only the rules for
delays (the last two rules in each column) differ from the
semantics presented in the original Forest paper [4]. We
explain the new rules in detail.

Loading. The judgment E ` load (F, r, s)�(v,md) holds
if, in environment E , when we load file systemF at path r into
memory as a specification s, we get a pair with representation
v and metadata md. We use a number of auxiliary functions.
First, we use functions loadk(E , F, r) to implement the load
function for each constant kτ2τ1 . These functions take an
environment E , a file system F , and a path r as arguments
and return the representation and metadata of type τ1 and τ2
respectively. Second, the operator JeKEτ evaluates expression
e in environment E and returns a value of type τ . Third, we
use standard projection functions π1 and π2.

The first new rule introduced in iForest is for loading a
delayed specification. This rule returns as its representation
a cursor (denoted c(E,r,s)) encapsulating the current envi-
ronment, the path argument, and the specification that was
delayed. This load always succeeds so the unit md that is
returned is (true, ()).

The second new rule uses a different judgment of the form
E ′ ` loadc(c(E,r,s), F) � (v,md). This judgment holds if,
in environment E ′, when we load cursor c(E,r,s) in file system

F , we get representation and metadata pair (v,md). The rule
says that if we perform a normal load in the given file system,
F , with the environment, path, and specification encapsulated
in the cursor, we will get the same result as when we perform
a cursor-load in F in any environment.

Storing. The judgment E ` store (F, v,md, r, s) �
(F ′, ϕ′) holds if, in environment E and file system F , storing
representation v and metadata md at path r using specifica-
tion s produces a new file system F ′ and validator ϕ′.

A validator is a predicate on file systems that checks for
internal inconsistencies in the representation and metadata [4].
We say that storing passes validation if the validator returns
true when evaluated on the resulting filesystem. As with the
load function, we use several auxiliary functions to define the
store function. First, we use functions storek(E , F, r, v,md)
to implement the store function for each constant kτ2τ1 . This
function takes as arguments an environment E , a file system
F , a path r, a representation v and metadata md. Second, we
use an append operation on file systems, F1++F2. Intuitively,
this operation copies all contents from F2 to F1, overwriting
any contents they have in common. Third, the F [r := ⊥]
function removes the mapping for a path r in F , or returns
F if r 6∈ dom(F). Finally, the function mdsdefault computes
“default” metadata for s.

The first new storing rule for iForest says that storing
a delayed specification returns an unchanged file system
and a validator that always evaluates to true. The sec-
ond new rule introduces a judgment of the form E ′ `
storec(c(E,r,s), F, v,md) � (F ′, ϕ′). This holds if, in envi-
ronment E ′, storing cursor c(E,r,s) into file system F with
representation v and metadata md yields a new file system
and validator pair (F ′, ϕ′). This rule says that such a store is
equivalent to storing the given representation and metadata
with the environment, path, and specification encapsulated in
the cursor into the given file system.

Round-tripping Properties. The original Forest paper
proved two round-tripping properties, showing that a load
and a subsequent store causes no change to the file system
(and passes validation) and that a store (if it passes validation)
and a subsequent load gives back the same representation
and metadata pair that was just stored. These properties also
hold in iForest along with analogous properties for cursors.
Formally:

Theorem 2 (LoadStore). Let E be an environment, F and
F ′ file systems, r a path, s a specification, v a representation,
md metadata, and ϕ′ a validator. If

E ` load (F, r, s) � (v,md)

E ` store (F, v,md, r, s) � (F ′, ϕ′)

then F = F ′ and ϕ′(F ′).

266

s R[[s]] M[[s]]

kτ2τ1 τ1 τ2 md

e :: s R[[s]] M[[s]]

(x:s1, s2) R[[s1]] ∗ R[[s2]] (M[[s1]] ∗M[[s2]]) md

[s | x ∈ e] R[[s]] list M[[s]] list md

P (e) unit unit md

s? R[[s]] option (M[[s]] option) md

Delay(s) (R[[s]] ∗M[[s]]) cur unit md

(a)

E ` load (F, r, kτ2τ1) � loadk(E , F, r)

E ` load (F, Jr/eKEfilepath, s) � (v,md)

E ` load (F, r, e :: s) � (v,md)

E ` load (F, r, s1) � (v1,md1)
(E , x 7→ v1, xmd 7→ md1) ` load (F, r, s2) � (v2,md2)

b = ((π1 md1) ∧ (π1 md2))

E ` load (F, r, (x:s1, s2)) � ((v1, v2), (b, (md1,md2)))

JeKEα list = [w1, .., wk]
∀i ∈ {1, .., k}.(E , x 7→ wi) ` load (F, r, s) � (vi,mdi)

b =
∧k
i π1 mdi ∧ vs = [v1, .., vk] ∧mds = [md1, ..,mdk]

E ` load (F, r, [s | x ∈ e]) � (vs, (b,mds))

b = JeKEbool
E ` load (F, r, P (e)) � ((), (b, ()))

r ∈ dom(F) ∧ E ` load (F, r, s) � (v,md)

E ` load (F, r, s?) � (v,md)

r 6∈ dom(F)

E ` load (F, r, s?) � (None, (true, None))

E ` load (F, r, 〈s〉) � (c(E,r,s), (true, ()))

E ` load (F, r, s) � (v,md)

E ′ ` loadc(c(E,r,s), F) � (v,md)

(b)

E ` store (F, v,md, r, kτ2τ1) � storek(E , F, r, v,md)

E ` store (F, v,md, Jr/eKEfilepath, s) � (F ′, ϕ′)

E ` store (F, v,md, r, e :: s) � (F ′, ϕ′)

md = (b, (md1,md2)) ∧ v = (v1, v2)
E ′ = (E , x 7→ v1, xmd 7→ md1)
b′ = (b = (π1 md1) ∧ (π1 md2))

E ` store (F, v1,md1, r, s1) � (F1, ϕ1)
E ′ ` store (F, v2,md2, r, s2) � (F2, ϕ2)

ϕ′ = (λF ′.b′ ∧ ϕ1(F ′) ∧ ϕ2(F ′))

E ` store (F, v,md, r, (x:s1, s2)) � (F1++F2, ϕ
′)

vs = [v1, .., vj] ∧mds = [md1, ..,mdl]
JeKEα list = [w1, .., wm] ∧ k = min(j, l,m)

b′ = (b =
∧k
i π1 mdi) ∧ ∀i ∈ {1, .., k}.

(E , x 7→ wi) ` store (F, vi,mdi, r, s) � (Fi, ϕi)

ϕ′ = (λF ′.(j = l = m) ∧ b′ ∧ (
∧k
i ϕi(F

′)))
F ′ = F1++..++Fk

E ` store (F, vs, (b,mds), r, [s | x ∈ e]) � (F ′, ϕ′)

ϕ′ = λF ′.b = JeKEbool
E ` store (F, (), (b, ()), r, P (e)) � (F,ϕ′)

E ` store (F, v,md, r, s) � (F ′, ϕ′)
ϕ1 = (λF ′.(b = π1 md) ∧ r ∈ dom(F) ∧ ϕ′(F ′))

E ` store (F, Some v, (b, Some md), r, s?) � (F ′, ϕ1)

ϕ′ = (λF ′.md = None ∧ b ∧ r 6∈ dom(F ′))

E ` store (F,None, (b,md), r, s?) � (F [r := ⊥], ϕ′)

E ` store (F, v,mdsdefault, r, s) � (F ′, ϕ1)

ϕ′ = λF ′.false

E ` store (F, Some v, (b,None), r, s?) � (F ′, ϕ′)

E ` store (F, v,md, r, 〈s〉) � (F, λF ′.true)

E ` store (F, v,md, r, s) � (F ′, ϕ′)

E ′ ` storec(c(E,r,s), F, v,md) � (F ′, ϕ′)

(c)

Figure 14. iForest semantics: (a) representation and metadata types; (b) load function; (c) store function.

267

Theorem 3 (StoreLoad). Let E be an environment, F and F ′

file systems, r a path, s a specification, v and v′ representa-
tions, md and md′ metadata, and ϕ′ a validator. If

E ` store (F, v,md, r, s) � (F ′, ϕ′) ϕ′(F ′)

E ` load (F ′, r, s) � (v′,md′)

then (v′,md′) = (v,md).

Theorem 4 (iLoadStore). Let E , E ′, and E ′′ be environments,
F and F ′ file systems, v a representation, md a metadata, ϕ′

a validator, and c(E,r,s) a cursor. If

E ′ ` loadc(c(E,r,s), F) � (v,md)

E ′′ ` storec(c(E,r,s), F, v,md) � (F ′, ϕ′)

then F = F ′ and ϕ′(F ′).

Theorem 5 (iStoreLoad). Let E , E ′, and E ′′ be environments,
F and F ′ file systems, v and v′ representations, md and md′

metadata, ϕ′ a validator, and c(E,r,s) a cursor. If

E ′ ` storec(c(E,r,s), F, v,md) � (F ′, ϕ′) ϕ′(F ′)

E ′′ ` loadc(c(E,r,s), F
′) � (v′,md′)

then (v′,md′) = (v,md).

Note these judgments do not require the same environments
since the environment in the cursor is used instead.

C. Skin Core Syntax and Semantics
This section describes the formal syntax and semantics of
skins and their accompanying type system.

Syntax. Figure 15 defines the semantics for a skin core
calculus. This syntax is a subset of the syntax from Figure 5.
For example, instead of having {h}, we have pairs, and we do
not have 〉 〈, map(h), or n(h), which can be encoded using
other constructs—e.g., 〉 〈 is equivalent to 〈 〉;∼.

The syntax of delay trees is similar to the syntax of iForest
specifications. Delay trees are derived from specifications,
but most details are stripped away, leaving only the basic
structure and its delay annotations. This elision makes delay
trees easier to work with in the formal semantics. Note that
path expressions are eliminated in delay trees—we found that
they are almost never useful and reduced readability. Finally,
we have the type syntax, which again mirrors specifications
fairly closely, with a few additions: top (>) and bottom (⊥)
types, as well as intersections (t1 ∧ t2) and unions (t1 ∨ t2).

Semantics. Next, we describe the semantics of the func-
tions shown in Figure 16 and how they relate to iForest.
Recall that we can apply a skin to a specification using the
application construct s@h. Skin application can be evaluated
in four steps, resulting in a new specification with the same
underlying structure, but possibly different delay annotations:

1. Extract a delay tree d from s using dtreeof .

2. Check the type of h against the type of d by composing
the typeofH and J·Kt functions.

3. If the preceding step produces a type error, report an error.
Otherwise we apply the skin application function J·Kh to
h and d to generate d′.

4. Use the apply function to apply the resulting delay tree
d′ back to s to generate s′, the final result of s@h.

Function dtreeof strips away extraneous information from
its argument to generate the corresponding delay tree. Func-
tion typeofH computes the type of a skin. Since many skins
can be applied to a variety of delay trees, we view types as
sets to which delay trees (and, by extension, specifications)
can belong. Function typeofD computes a type from a delay
tree. This function is not needed in iForest, but is used in a
number of theorems.

The type of the primitive skins delay (〈 〉), negate (∼),
and identity (_) are all top (>). This reflects the fact that
these skins affect the delay annotation of a specification and
do not depend on its structure. The structual skins for com-
prehensions ([h]), options (h option), and pairs ({h1, h2})
encode the corresponding constraints on the structure of the
delay tree and have the corresponding structural types (i.e.,
[t], t option, and {t1, t2}). The sequential composition skin
(h1;h2) requires that the specification that it is applied to
belong to the types of both of its sub-skins—i.e., it has an
intersection type (t1 ∧ t2). The union skin (h1 + h2) requires
that the specification it is applied to must belong to either of
the types of its sub-skins—i.e., it has a union type (t1 ∨ t2).
Finally, the predicate skin (h|t) requires the specification to
belong to both the specified type and the type of its sub-skin.

Function (J·Kt) takes a type and a delay tree and checks
whether the delay tree belongs to that type. Function (J·Kh)
applies a skin to a delay tree, producing a new delay tree with
the same structure, but possibly different delay annotations.
Note that skin application is partial—it is undefined if the de-
lay tree does not belong to the type of the skin. However, since
the type system is sound and complete, it is easy to ensure
that the function will never be undefined in practice. Function
apply applies a delay tree to a specification, modifying its
delay annotations but not its structure. This function is partial
because the structure of the delay tree and the specification
must match. However, since delay trees are extracted from
specifications (with dtreeof) and skins preserve structure (cf.
Appendix D), partiality is not an issue in practice.

D. Skin Properties and Theorems
This section presents the main lemmas and theorems we have
proven about the skin language. Before we can prove these
results, we need a few additional definitions. First, we define
skin application formally:

Definition 1 (Skin Application).

s@h = apply s (JhKh (dtreeof s))

268

Metavar Conventions

s ∈Spec
h ∈Skin
d ∈DTree
t ∈Type
x ∈Var
e ∈Expr
b ∈B

Function Types

dtreeof : Spec→ DTree
typeofD : DTree→ Type
typeofH : Skin→ Type
J·Kt : Type→ DTree→ B
J·Kh : Skin→ DTree⇀ DTree
apply : Spec→ DTree⇀ Spec

Delay Tree Syntax

d ::= kτ2τ1
| (d1, d2)
| [d]
| p
| d?
| Delay(d)

Skin Syntax

h ::= 〈 〉
| ∼
| _
| [h]
| h option
| {h1, h2}
| h1 + h2
| h1;h2
| h|t

Type Syntax

t ::= consτ2τ1
| p
| [t]
| t option
| {t1, t2}
| t1 ∧ t2
| t1 ∨ t2
| >
| ⊥

Figure 15. Formal syntax of all components of the skin
language

Next, we define skin equivalence:

Definition 2 (Skin Equivalence).

h1 = h2 ⇐⇒
((Jh1Kh d0 = d ∧ Jh2Kh d0 = d′) =⇒ d = d′)

Hence, two skins are equivalent if and only if they produce
the same result when applied to a given specification.

Using these definitions, we can prove a number of inter-
esting equivalences on skins:

Theorem 6 (Equalities on Skins).

∼;∼ = _

h1; (h2;h3) = (h1;h2);h3

(h1 + h2);h3 = h1;h3 + h2;h3

h1; (h2 + h3) = h1;h2 + h1;h3

h; _ = h = _;h

Theorem 6 states that double negation is the same as identity,
and that composition is associative, distributes over union,
and has the identity skin as a unit.

The next few lemmas are used to prove that skin applica-
tion is compositional (Theorem 7). First we show that appli-
cation preserves delay trees:

Lemma 1 (Delay Tree Preservation).

d ∈ dom(apply s) =⇒ dtreeof (apply s d) = d

Let =s
d denote equality of specifications modulo delay

annotations. Two specifications are related by this operator if
they have the same underlying structure. The next lemma tells
us that the delay annotations in a specification are irrelevant
to the result of the apply function.

Lemma 2 (Apply Equivalence).

s1 =s
d s2 =⇒ apply s1 d = apply s2 d

Lemma 3 shows that the apply function does not change the
structure of a specification—i.e., the output is equivalent to
the input modulo delays.

Lemma 3 (Apply Preservation).

d ∈ dom(apply s) =⇒ apply s d =s
d s

Lemma 4 shows that applying apply twice in sequence is
equivalent to just the second application.

Lemma 4 (Apply Cancellation).

d1 ∈ dom(apply s) =⇒
apply (apply s d1) d2 = apply s d2

Finally, Theorem 7 combines the previous four lemmas to
prove that applying two skins to a specification one after
another is equivalent to applying their composition.

Theorem 7 (Skin Composition).

(s@h1)@h2 = s@h1;h2

Let =d
d denote equality of delay trees modulo delay an-

notations. The next two lemmas are used to prove that the
type of a specification is not changed when a skin is applied
(Theorem 8). Lemma 5 shows that the type of a delay tree is
not affected by delay annotations.

Lemma 5 (Invariance under Delays).

d1 =d
d d2 =⇒ typeofD d1 = typeofD d2

Lemma 6 shows that if two specifications are equivalent
modulo delays (i.e., have the same structure), then so are the
delay trees extracted from them.

Lemma 6 (DTreeof Preservation).

s1 =s
d s2 =⇒ dtreeof s1 =d

d dtreeof s2

Theorem 8 shows that the type of a specification is not
affected by skin application.

Theorem 8 (Invariance under Skin Application).

dtreeof s ∈ dom(JhKh) =⇒
typeofD (dtreeof s) = typeofD (dtreeof s@h)

269

dtreeof : Spec→ DTree

dtreeof kτ2τ1 = kτ2τ1
dtreeof e :: s = dtreeof s
dtreeof (x:s1, s2) = (dtreeof s1, dtreeof s2)
dtreeof [s | x ∈ e] = [dtreeof s]
dtreeof P (e) = p
dtreeof s? = (dtreeof s)?
dtreeof Delay(s) =Delay(dtreeof s)

typeofD : DTree→ Type

typeofD kτ2τ1 = consτ2τ1
typeofD p = p
typeofD Delay(d) = typeofD d
typeofD [d] = [typeofD d]
typeofD d? = (typeofD d) option
typeofD (d1, d2) = {typeofD d1, typeofD d2}

typeofH : Skin→ Type

typeofH 〈 〉 =>
typeofH ∼ =>
typeofH _ =>
typeofH [h] = [typeofH h]
typeofH h option = (typeofH h) option
typeofH {h1, h2} = {typeofH h1, typeofH h2}
typeofH h1;h2 = (typeofH h1) ∧ (typeofH h2)
typeofH h1 + h2 = (typeofH h1) ∨ (typeofH h2)
typeofH h|t = t ∧ (typeofH h)

J·Kt : Type→ DTree→ B
JtKt d =

match d with
| Delay(d) -> JtKt d
| d ->

match (t,d) with
| (consτ2τ1,k

τ2
τ1) -> true

| (p,p) -> true
| (t option,d?) -> JtKt d
| ([t],[d]) -> JtKt d
| ({t1,t2},(d1, d2)) -> Jt1Kt d1 && Jt2Kt d2
| (t1 ∧ t2,d) -> Jt1Kt d && Jt2Kt d
| (t1 ∨ t2,d) -> Jt1Kt d || Jt2Kt d
| (>,_) -> true
| (⊥,_) -> false
| _ -> false

J·Kh : Skin→ DTree⇀ DTree
JhKh d =

match h with
| h|t -> if JtKt d then JhKh d
| h1;h2 -> Jh2Kh (Jh1Kh d)
| h1 + h2 ->

if JtypeofH hKt d then Jh1Kh d else Jh2Kh d
| h ->

let d,del =
match d with
| Delay(d) -> d,true
| d -> d,false

in
let d,del =

match (h,d) with
| (h option,d?) -> (JhKh d)?,del
| ([h],[d]) -> [JhKh d],del
| ({h1,h2},(d1, d2)) -> (Jh1Kh d1, Jh2Kh d2),del
| (〈 〉,d) -> d,true
| (∼,d) -> d,(not del)
| (_,d) -> d,del

in
if del
then Delay(d)
else d

apply : Spec→ DTree⇀ Spec

apply s d =
match d with
| Delay(d) -> Delay(apply s d)
| d ->

let s =
match s with
| Delay(s) -> s
| s -> s

in
match (s,d) with
| (kτ2τ1,k

τ2
τ1) -> kτ2τ1

| (P (e),p) -> P (e)
| (s?,d?) -> (apply s d)?
| (e :: s,d) -> e :: (apply s d)
| ([s | x ∈ e],[d]) -> [apply s d | x ∈ e]
| ((x:s1, s2),(d1, d2)) ->

(x:apply s1 d1, apply s2 d2)

Figure 16. Formal semantics of skins

270

This property is important because it means that users do
not have to consider anything but the base specification when
writing a compatible skin. Any delays or skins applied to a
specification or its sub-specifications are irrelevant.

The next three lemmas show that the type system is
sound and complete. Lemma 7 shows that type checking
only depends on the structure of a delay tree, not the delays.

Lemma 7 (Typing Invariance under Delays).

(d1 =d
d d2 ∧ JtKt d1 =⇒ JtKt d2)

Lemma 8 shows that the underlying structure of a delay tree
is not changed by skin application.

Lemma 8 (Skin Application Preservation).

JhKh d1 = d2 =⇒ d1 =d
d d2

Lemma 9 shows that only the underlying structure of a delay
tree determines whether or not a skin can be applied to it.

Lemma 9 (Domain Invariance under Delays).

d1 =d
d d2 ∧ d1 ∈ dom(JhKh) =⇒ d2 ∈ dom(JhKh)

Finally, using these lemmas, we prove that the type system
is sound and complete.

Theorem 9 (Soundness). The type system is sound, i.e.,

JtypeofH hKt d =⇒ d ∈ dom(JhKh)

Theorem 10 (Completeness). The type system is complete,
i.e.,

d ∈ dom(JhKh) =⇒ JtypeofH hKt d

271

